How to Find a Formula of the Power of a Matrix

Linear algebra problems and solutions

Problem 8

Let $A= \begin{bmatrix}
1 & 2\\
2& 1
\end{bmatrix}$.
Compute $A^n$ for any $n \in \N$.

LoadingAdd to solve later
Sponsored Links

Plan.

We diagonalize the matrix $A$ and use this Problem.

Steps.

  1. Find eigenvalues and eigenvectors of the matrix $A$.
  2. Diagonalize the matrix $A$.
  3. Use the result of  this Problem.

Proof.

We first diagonalize the matrix $A$. We solve
\begin{align*}
\det(A-\lambda I) & =\begin{vmatrix}
1-\lambda & 2\\
2& 1-\lambda
\end{vmatrix} \\
&=(1-\lambda)^2-4=\lambda^2-2\lambda-3 =(\lambda+1)(\lambda-3)=0
\end{align*}
and obtain the eigenvalues $\lambda=-1, 3$.

To find an eigenvector $\mathbf{x}$ corresponding to $\lambda=-1$, we solve $(A+I)\mathbf{x}=\mathbf{0}$ or
\[ \begin{bmatrix}
2 & 2\\
2& 2
\end{bmatrix}
\begin{bmatrix} x_1 \\
x_2
\end{bmatrix}=
\begin{bmatrix} 0 \\
0
\end{bmatrix}.\] We obtain an eigenvector $\mathbf{x}=\begin{bmatrix}
1 \\
-1
\end{bmatrix}$ corresponding to $\lambda=-1$.

Similarly, solving $(A-3I)\mathbf{y}=\mathbf{0}$, we obtain an eigenvector $\mathbf{y}=\begin{bmatrix}
1 \\
1
\end{bmatrix}$
corresponding to $\lambda=3$.

Thus the invertible matrix $S=[\mathbf{x} \, \mathbf{y}]=\begin{bmatrix}
1 & 1 \\
-1& 1
\end{bmatrix}$ diagonalizes the matrix $A$, that is,
\[ S^{-1}AS =\begin{bmatrix}
-1 & 0\\
0& 3
\end{bmatrix} \text{ or equivalently }
A=S\begin{bmatrix}
-1 & 0\\
0& 3
\end{bmatrix} S^{-1}.\] Then for each $n \in \N$, we have
\begin{align*}
A^n &= \left (S\begin{bmatrix}
-1 & 0\\
0& 3
\end{bmatrix} S^{-1} \right)^n
=S \begin{bmatrix}
-1 & 0\\
0& 3
\end{bmatrix}^n S^{-1}
=S \begin{bmatrix}
(-1)^n & 0\\
0& 3^n
\end{bmatrix} S^{-1} \\[6pt] &=
\begin{bmatrix}
1 & 1 \\
-1& 1
\end{bmatrix}
\begin{bmatrix}
(-1)^n & 0\\
0& 3^n
\end{bmatrix}
\frac{1}{2}
\begin{bmatrix}
1 & -1 \\
1& 1
\end{bmatrix}
=\frac{1}{2} \begin{bmatrix}
(-1)^n+3^n & (-1)^{n+1}+3^n\\
(-1)^{n+1}+3^n& (-1)^n+3^n
\end{bmatrix}.
\end{align*}

(See this problem for the details of these computations.)

Therefore we obtained the formula
\[A^n=\frac{1}{2} \begin{bmatrix}
(-1)^n+3^n & (-1)^{n+1}+3^n\\
(-1)^{n+1}+3^n& (-1)^n+3^n
\end{bmatrix}.\]

Comment.

Another typical method to compute a power of a square matrix is mathematical induction. To use it, we need to first compute several small powers like $A^2$ and $A^3$ and guess the formula for $A^n$.

If you can guess the formula, then the mathematical induction part is not difficult. But for this specific problem, the formula is a bit complicated to guess as you can see from the solution above. Thus we used diagonalization trick.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Linear Algebra Problems and Solutions
Powers of a Diagonal Matrix

Let $A=\begin{bmatrix} a & 0\\ 0& b \end{bmatrix}$. Show that (1) $A^n=\begin{bmatrix} a^n & 0\\ 0& b^n \end{bmatrix}$ for any...

Close