# matrix-nonsingular-10seconds

by Yu · Published · Updated

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

### More from my site

- For Which Choices of $x$ is the Given Matrix Invertible? Determine the values of $x$ so that the matrix \[A=\begin{bmatrix} 1 & 1 & x \\ 1 &x &x \\ x & x & x \end{bmatrix}\] is invertible. For those values of $x$, find the inverse matrix $A^{-1}$. Solution. We use the fact that a matrix is invertible […]
- Problems and Solutions About Similar Matrices Let $A, B$, and $C$ be $n \times n$ matrices and $I$ be the $n\times n$ identity matrix. Prove the following statements. (a) If $A$ is similar to $B$, then $B$ is similar to $A$. (b) $A$ is similar to itself. (c) If $A$ is similar to $B$ and $B$ […]
- Determine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a Matrix Suppose the following information is known about a $3\times 3$ matrix $A$. \[A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=6\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 1 \\ -1 \\ 1 […]
- Algebraic Number is an Eigenvalue of Matrix with Rational Entries A complex number $z$ is called algebraic number (respectively, algebraic integer) if $z$ is a root of a monic polynomial with rational (respectively, integer) coefficients. Prove that $z \in \C$ is an algebraic number (resp. algebraic integer) if and only if $z$ is an eigenvalue of […]
- A Symmetric Positive Definite Matrix and An Inner Product on a Vector Space (a) Suppose that $A$ is an $n\times n$ real symmetric positive definite matrix. Prove that \[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans}A\mathbf{y}\] defines an inner product on the vector space $\R^n$. (b) Let $A$ be an $n\times n$ real matrix. Suppose […]
- Range, Null Space, Rank, and Nullity of a Linear Transformation from $\R^2$ to $\R^3$ Define the map $T:\R^2 \to \R^3$ by $T \left ( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right )=\begin{bmatrix} x_1-x_2 \\ x_1+x_2 \\ x_2 \end{bmatrix}$. (a) Show that $T$ is a linear transformation. (b) Find a matrix $A$ such that […]
- Group Homomorphism, Preimage, and Product of Groups Let $G, G'$ be groups and let $f:G \to G'$ be a group homomorphism. Put $N=\ker(f)$. Then show that we have \[f^{-1}(f(H))=HN.\] Proof. $(\subset)$ Take an arbitrary element $g\in f^{-1}(f(H))$. Then we have $f(g)\in f(H)$. It follows that there exists $h\in H$ […]
- Solve the System of Linear Equations and Give the Vector Form for the General Solution Solve the following system of linear equations and give the vector form for the general solution. \begin{align*} x_1 -x_3 -2x_5&=1 \\ x_2+3x_3-x_5 &=2 \\ 2x_1 -2x_3 +x_4 -3x_5 &= 0 \end{align*} (The Ohio State University, linear algebra midterm exam […]