Let $R$ be a commutative ring. Let $S$ be a subset of $R$ and let $I$ be an ideal of $I$.
We define the subset
\[(I:S):=\{ a \in R \mid aS\subset I\}.\]
Prove that $(I:S)$ is an ideal of $R$. This ideal is called the ideal quotient, or colon ideal.

Let $a, b\in (I:S)$ and let $r\in R$. To show that $(I:S)$ is an ideal of the ring $R$, it suffices to show that the element $a+rb\in (I:S)$.
Thus we show that
\[(a+br)S\subset I.\]

Let $s\in S$ be an arbitrary element. Then since $a, b \in (I:S)$, we have $as, bs \in I$.
Since $I$ is an ideal of $R$, we have $r(bs)\in I$ as well.

Thus
\[(a+rb)s=as+r(bs)\in I\]
for any $s\in S$, and hence we obtain $(a+br)S \subset I$.
By the definition of the ideal quotient, we have $a+br\in (I:S)$, and hence $(I:S)$ is an ideal of the ring $R$.

Equivalent Conditions For a Prime Ideal in a Commutative Ring
Let $R$ be a commutative ring and let $P$ be an ideal of $R$. Prove that the following statements are equivalent:
(a) The ideal $P$ is a prime ideal.
(b) For any two ideals $I$ and $J$, if $IJ \subset P$ then we have either $I \subset P$ or $J \subset P$.
Proof. […]

Prime Ideal is Irreducible in a Commutative Ring
Let $R$ be a commutative ring. An ideal $I$ of $R$ is said to be irreducible if it cannot be written as an intersection of two ideals of $R$ which are strictly larger than $I$.
Prove that if $\frakp$ is a prime ideal of the commutative ring $R$, then $\frakp$ is […]

A Maximal Ideal in the Ring of Continuous Functions and a Quotient Ring
Let $R$ be the ring of all continuous functions on the interval $[0, 2]$.
Let $I$ be the subset of $R$ defined by
\[I:=\{ f(x) \in R \mid f(1)=0\}.\]
Then prove that $I$ is an ideal of the ring $R$.
Moreover, show that $I$ is maximal and determine […]

Nilpotent Element a in a Ring and Unit Element $1-ab$
Let $R$ be a commutative ring with $1 \neq 0$.
An element $a\in R$ is called nilpotent if $a^n=0$ for some positive integer $n$.
Then prove that if $a$ is a nilpotent element of $R$, then $1-ab$ is a unit for all $b \in R$.
We give two proofs.
Proof 1.
Since $a$ […]

A Prime Ideal in the Ring $\Z[\sqrt{10}]$
Consider the ring
\[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}\]
and its ideal
\[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}.\]
Show that $p$ is a prime ideal of the ring $\Z[\sqrt{10}]$.
Definition of a prime ideal.
An ideal $P$ of a ring $R$ is […]

Generators of the Augmentation Ideal in a Group Ring
Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by
\[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\]
where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring […]

Characteristic of an Integral Domain is 0 or a Prime Number
Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.
Definition of the characteristic of a ring.
The characteristic of a commutative ring $R$ with $1$ is defined as […]