Idempotent Matrices. 2007 University of Tokyo Entrance Exam Problem

Tokyo University Linear Algebra Exam Problems and Solutions

Problem 265

For a real number $a$, consider $2\times 2$ matrices $A, P, Q$ satisfying the following five conditions.

  1. $A=aP+(a+1)Q$
  2. $P^2=P$
  3. $Q^2=Q$
  4. $PQ=O$
  5. $QP=O$,

where $O$ is the $2\times 2$ zero matrix.
Then do the following problems.


(a) Prove that $(P+Q)A=A$.


(b) Suppose $a$ is a positive real number and let
\[ A=\begin{bmatrix}
a & 0\\
1& a+1
\end{bmatrix}.\] Then find all matrices $P, Q$ satisfying conditions (1)-(5).


(c) Let $n$ be an integer greater than $1$. For any integer $k$, $2\leq k \leq n$, we define the matrix
\[A_k=\begin{bmatrix}
k & 0\\
1& k+1
\end{bmatrix}.\] Then calculate and simplify the matrix product
\[A_nA_{n-1}A_{n-2}\cdots A_2.\]

(Tokyo University Entrance Exam 2007)
 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) Prove that $(P+Q)A=A$.

We have
\begin{align*}
(P+Q)A&\stackrel{(1)}{=} (P+Q)(aP+(a+1)Q)\\
&=aP^2+(a+1)PQ+aQP+(a+1)Q^2\\
&=aP+(a+1)O+aO+(a+1)Q \\
&\text{[ by (2), (3), (4), (5)]}\\
&=aP+(a+1)Q\stackrel{(1)}{=}A.
\end{align*}
Hence, we obtain
\[(P+Q)A=A\] as required.

(b) Find all matrices $P, Q$

Note that the matrix $A=\begin{bmatrix}
a & 0\\
1& a+1
\end{bmatrix}$ is invertible since the determinant
\[\det(A)=\begin{vmatrix}
a & 0\\
1& a+1
\end{vmatrix}=a(a+1)\neq 0.\] By part (a), we know $(P+Q)A=A$.
Multiplying this by $A^{-1}$ from the right, we have
\[P+Q=I,\] where $I$ is the $2\times 2$ identity matrix.
Substituting $Q=I-P$ into the equality $A=aP+(a+1)Q$ of (1), we have
\begin{align*}
A&=aP+(a+1)(I-P)\\
&=(a+1)I-P.
\end{align*}

Thus, we have
\begin{align*}
P&=(a+1)I-A\\[6pt] &=\begin{bmatrix}
a+1 & 0\\
0& a+1
\end{bmatrix}-\begin{bmatrix}
a & 0\\
1& a+1
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
1 & 0\\
-1& 0
\end{bmatrix},
\end{align*}
and thus
\begin{align*}
Q&=I-P\\[6pt] &=\begin{bmatrix}
1 & 0\\
0& 1
\end{bmatrix}-\begin{bmatrix}
1 & 0\\
-1& 0
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
0 & 0\\
1& 1
\end{bmatrix}.
\end{align*}
It is straightforward to check that the matrices
\[P=\begin{bmatrix}
1 & 0\\
-1& 0
\end{bmatrix} \text{ and } Q=\begin{bmatrix}
0 & 0\\
1& 1
\end{bmatrix}\] satisfy conditions (1)-(5).
Hence these are the only matrices satisfying conditions (1)-(5).

(c) Calculate and simplify the matrix product $A_nA_{n-1}A_{n-2}\cdots A_2$

In part (2), we showed that for any positive integer $k$
\[ A_k=kP+(k+1)Q,\] where
\[P=\begin{bmatrix}
1 & 0\\
-1& 0
\end{bmatrix} \text{ and } Q=\begin{bmatrix}
0 & 0\\
1& 1
\end{bmatrix}.\] (We just applied the result of (b) with $a=k$.)

Thus we have
\begin{align*}
&A_n A_{n-1} \cdots A_2 \\
&=\left(nP+(n+1)Q\right) \left((n-1)P+nQ\right)\cdots \left (2P+3Q\right)\\[6pt] &=n! P+\frac{(n+1)!}{2} Q
\end{align*}
We used conditions (4) and (5) in the second equality.
Using the explicit matrices for $P$ and $Q$, we have
\begin{align*}
&n! P+\frac{(n+1)!}{2} Q\\[6pt] &=n!\begin{bmatrix}
1 & 0\\
-1& 0
\end{bmatrix}+\frac{(n+1)!}{2}\begin{bmatrix}
0 & 0\\
1& 1
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
n! & 0\\
-n!+\frac{(n+1)!}{2}& \frac{(n+1)!}{2}
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
n! & 0\\
n!\frac{n-1}{2}& \frac{(n+1)!}{2}
\end{bmatrix}.
\end{align*}

Note that in the last step, we computed
\begin{align*}
&-n!+\frac{(n+1)!}{2}=-n!+\frac{(n+1)n!}{2}\\[6pt] &=n!(-1+\frac{n+1}{2})\\[6pt] &=n!\frac{n-1}{2}.
\end{align*}

In conclusion, we have obtained
\[A_n A_{n-1} \cdots A_2 =\begin{bmatrix}
n! & 0\\
n!\frac{n-1}{2}& \frac{(n+1)!}{2}
\end{bmatrix}.\]

Comment.

Another way to solve (c) is that one first guesses the formula we obtained and prove it by mathematical induction.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Determine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a MatrixDetermine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a Matrix Suppose the following information is known about a $3\times 3$ matrix $A$. \[A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=6\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 1 \\ -1 \\ 1 […]
  • Symmetric Matrix and Its Eigenvalues, Eigenspaces, and EigenspacesSymmetric Matrix and Its Eigenvalues, Eigenspaces, and Eigenspaces Let $A$ be a $4\times 4$ real symmetric matrix. Suppose that $\mathbf{v}_1=\begin{bmatrix} -1 \\ 2 \\ 0 \\ -1 \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue $1$ of $A$. Suppose that the eigenspace for the eigenvalue $2$ is $3$-dimensional. (a) Find an […]
  • Find All Matrices Satisfying a Given RelationFind All Matrices Satisfying a Given Relation Let $a$ and $b$ be two distinct positive real numbers. Define matrices \[A:=\begin{bmatrix} 0 & a\\ a & 0 \end{bmatrix}, \,\, B:=\begin{bmatrix} 0 & b\\ b& 0 \end{bmatrix}.\] Find all the pairs $(\lambda, X)$, where $\lambda$ is a real number and $X$ is a […]
  • Idempotent Matrix and its EigenvaluesIdempotent Matrix and its Eigenvalues Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$. (a) Find a nonzero, nonidentity idempotent matrix. (b) Show that eigenvalues of an idempotent matrix $A$ is either $0$ or $1$. (The Ohio State University, Linear Algebra Final Exam […]
  • Find all Values of x such that the Given Matrix is InvertibleFind all Values of x such that the Given Matrix is Invertible Let \[ A=\begin{bmatrix} 2 & 0 & 10 \\ 0 &7+x &-3 \\ 0 & 4 & x \end{bmatrix}.\] Find all values of $x$ such that $A$ is invertible. (Stanford University Linear Algebra Exam) Hint. Calculate the determinant of the matrix $A$. Solution. A […]
  • If $A$ is an Idempotent Matrix, then When $I-kA$ is an Idempotent Matrix?If $A$ is an Idempotent Matrix, then When $I-kA$ is an Idempotent Matrix? A square matrix $A$ is called idempotent if $A^2=A$. (a) Suppose $A$ is an $n \times n$ idempotent matrix and let $I$ be the $n\times n$ identity matrix. Prove that the matrix $I-A$ is an idempotent matrix. (b) Assume that $A$ is an $n\times n$ nonzero idempotent matrix. Then […]
  • Idempotent (Projective) Matrices are DiagonalizableIdempotent (Projective) Matrices are Diagonalizable Let $A$ be an $n\times n$ idempotent complex matrix. Then prove that $A$ is diagonalizable.   Definition. An $n\times n$ matrix $A$ is said to be idempotent if $A^2=A$. It is also called projective matrix. Proof. In general, an $n \times n$ matrix $B$ is […]
  • True of False Problems on Determinants and Invertible MatricesTrue of False Problems on Determinants and Invertible Matrices Determine whether each of the following statements is True or False. (a) If $A$ and $B$ are $n \times n$ matrices, and $P$ is an invertible $n \times n$ matrix such that $A=PBP^{-1}$, then $\det(A)=\det(B)$. (b) If the characteristic polynomial of an $n \times n$ matrix $A$ […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
If matrix product $AB$ is a square, then is $BA$ a square matrix?

Let $A$ and $B$ are matrices such that the matrix product $AB$ is defined and $AB$ is a square matrix....

Close