If a Sylow Subgroup is Normal in a Normal Subgroup, it is a Normal Subgroup

Group Theory Problems and Solutions in Mathematics

Problem 226

Let $G$ be a finite group. Suppose that $p$ is a prime number that divides the order of $G$.
Let $N$ be a normal subgroup of $G$ and let $P$ be a $p$-Sylow subgroup of $G$.
Show that if $P$ is normal in $N$, then $P$ is a normal subgroup of $G$.

 
LoadingAdd to solve later
Sponsored Links

Hint.

It follows from Sylow’s theorem that if $Q_1$ and $Q_2$ are both $p$-Sylow subgroups of a group $H$, then they are conjugate.
Namely, there exists $h\in H$ such that $h^{-1}Q_1h=Q_2$.

For more details, check out the post Sylow’s theorem (summary)

To prove the problem, let $g\in G$ be any element and try to show that both $P$ and $g^{-1}Pg$ are $p$-Sylow subgroups of $N$.
Then use the fact above with $Q_1=P$, $Q_2=g^{-1}Pg$, and $H=N$.

We use the following notations: $A < B$ means that $A$ is a subgroup of a group $B$, and $A \triangleleft B$ denotes that $A$ is a normal subgroup of $B$.

Proof.

For any $g \in G$, since $P < N$ and $N \triangleleft G$, we have \begin{align*} g^{-1}Pg < g^{-1}Ng=N. \end{align*} Thus $g^{-1}Pg$ is a $p$-Sylow subgroup in $N$. In general, any two $p$-Sylow subgroups in a group are conjugate by Sylow's theorem. Since $P$ and $g^{-1}Pg$ are both $p$-Sylow subgroups in $N$, there exists $n \in N$ such that \[n^{-1}Pn=g^{-1}Pg.\] Since $n\in N$ and $P$ is normal in $N$, we have $n^{-1}Pn=P$. Hence we obtain \[P=g^{-1}Pg.\] Since $g\in G$ is arbitrary, this implies that $P$ is a normal subgroup in $G$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Subgroup Containing All $p$-Sylow Subgroups of a GroupSubgroup Containing All $p$-Sylow Subgroups of a Group Suppose that $G$ is a finite group of order $p^an$, where $p$ is a prime number and $p$ does not divide $n$. Let $N$ be a normal subgroup of $G$ such that the index $|G: N|$ is relatively prime to $p$. Then show that $N$ contains all $p$-Sylow subgroups of […]
  • Non-Abelian Group of Order $pq$ and its Sylow SubgroupsNon-Abelian Group of Order $pq$ and its Sylow Subgroups Let $G$ be a non-abelian group of order $pq$, where $p, q$ are prime numbers satisfying $q \equiv 1 \pmod p$. Prove that a $q$-Sylow subgroup of $G$ is normal and the number of $p$-Sylow subgroups are $q$.   Hint. Use Sylow's theorem. To review Sylow's theorem, check […]
  • Group of Order $pq$ Has a Normal Sylow Subgroup and SolvableGroup of Order $pq$ Has a Normal Sylow Subgroup and Solvable Let $p, q$ be prime numbers such that $p>q$. If a group $G$ has order $pq$, then show the followings. (a) The group $G$ has a normal Sylow $p$-subgroup. (b) The group $G$ is solvable.   Definition/Hint For (a), apply Sylow's theorem. To review Sylow's theorem, […]
  • Sylow Subgroups of a Group of Order 33 is Normal SubgroupsSylow Subgroups of a Group of Order 33 is Normal Subgroups Prove that any $p$-Sylow subgroup of a group $G$ of order $33$ is a normal subgroup of $G$.   Hint. We use Sylow's theorem. Review the basic terminologies and Sylow's theorem. Recall that if there is only one $p$-Sylow subgroup $P$ of $G$ for a fixed prime $p$, then $P$ […]
  • A Group of Order $20$ is SolvableA Group of Order $20$ is Solvable Prove that a group of order $20$ is solvable.   Hint. Show that a group of order $20$ has a unique normal $5$-Sylow subgroup by Sylow's theorem. See the post summary of Sylow’s Theorem to review Sylow's theorem. Proof. Let $G$ be a group of order $20$. The […]
  • Every Group of Order 72 is Not a Simple GroupEvery Group of Order 72 is Not a Simple Group Prove that every finite group of order $72$ is not a simple group. Definition. A group $G$ is said to be simple if the only normal subgroups of $G$ are the trivial group $\{e\}$ or $G$ itself. Hint. Let $G$ be a group of order $72$. Use the Sylow's theorem and determine […]
  • Every Sylow 11-Subgroup of a Group of Order 231 is Contained in the Center $Z(G)$Every Sylow 11-Subgroup of a Group of Order 231 is Contained in the Center $Z(G)$ Let $G$ be a finite group of order $231=3\cdot 7 \cdot 11$. Prove that every Sylow $11$-subgroup of $G$ is contained in the center $Z(G)$. Hint. Prove that there is a unique Sylow $11$-subgroup of $G$, and consider the action of $G$ on the Sylow $11$-subgroup by […]
  • If a Subgroup Contains a Sylow Subgroup, then the Normalizer is the Subgroup itselfIf a Subgroup Contains a Sylow Subgroup, then the Normalizer is the Subgroup itself Let $G$ be a finite group and $P$ be a nontrivial Sylow subgroup of $G$. Let $H$ be a subgroup of $G$ containing the normalizer $N_G(P)$ of $P$ in $G$. Then show that $N_G(H)=H$.   Hint. Use the conjugate part of the Sylow theorem. See the second statement of the […]

You may also like...

1 Response

  1. 12/31/2016

    […] If a Sylow subgroup is normal in a normal subgroup, it is a normal subgroup […]

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Cyclic Group if and only if There Exists a Surjective Group Homomorphism From $\Z$

Show that a group $G$ is cyclic if and only if there exists a surjective group homomorphism from the additive...

Close