If the Order of a Group is Even, then the Number of Elements of Order 2 is Odd

Group Theory Problems and Solutions in Mathematics

Problem 326

Prove that if $G$ is a finite group of even order, then the number of elements of $G$ of order $2$ is odd.

 
LoadingAdd to solve later

Sponsored Links


Proof.

First observe that for $g\in G$,
\[g^2=e \iff g=g^{-1},\] where $e$ is the identity element of $G$.
Thus, the identity element $e$ and the elements of order $2$ are the only elements of $G$ that are equal to their own inverse elements.

Hence, each element $x$ of order greater than $2$ comes in pairs $\{x, x^{-1}\}$.
So we have
\begin{align*}
&G=\\
&\{e\}\cup \{\text{ elements of order $2$ } \} \cup \{x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_k, x_k^{-1}\},
\end{align*}
where $x_i$ are elements of order greater than $2$ for $i=1,2, \dots, k$.

As we noted above, the elements $x_i, x_i^{-1}$ are distinct.
Thus the third set contains an even number of elements.

Therefore we have
\begin{align*}
&\underbrace{G}_{\text{even}}=\\
&\underbrace{\{e\}}_{\text{odd}}\cup \{\text{ elements of order $2$ } \}\cup \underbrace{\{x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_k, x_k^{-1}\}}_\text{even}
\end{align*}
It follows that the number of elements of $G$ of order $2$ must be odd.

If the Order of a Group is Even, then it has a Non-Identity Element of Order 2

The consequence of the problem yields that the number of elements of order $2$ is odd, in particular, it is not zero.

Hence we obtain:

If the order of a group is even, then it has a non-identity element of order 2.

LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Abelian Group problems and solutions
A Group is Abelian if and only if Squaring is a Group Homomorphism

Let $G$ be a group and define a map $f:G\to G$ by $f(a)=a^2$ for each $a\in G$. Then prove that...

Close