First observe that for $g\in G$,
\[g^2=e \iff g=g^{-1},\]
where $e$ is the identity element of $G$.
Thus, the identity element $e$ and the elements of order $2$ are the only elements of $G$ that are equal to their own inverse elements.

Hence, each element $x$ of order greater than $2$ comes in pairs $\{x, x^{-1}\}$.
So we have
\begin{align*}
&G=\\
&\{e\}\cup \{\text{ elements of order $2$ } \} \cup \{x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_k, x_k^{-1}\},
\end{align*}
where $x_i$ are elements of order greater than $2$ for $i=1,2, \dots, k$.

As we noted above, the elements $x_i, x_i^{-1}$ are distinct.
Thus the third set contains an even number of elements.

Therefore we have
\begin{align*}
&\underbrace{G}_{\text{even}}=\\
&\underbrace{\{e\}}_{\text{odd}}\cup \{\text{ elements of order $2$ } \}\cup \underbrace{\{x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_k, x_k^{-1}\}}_\text{even}
\end{align*}
It follows that the number of elements of $G$ of order $2$ must be odd.

If the Order of a Group is Even, then it has a Non-Identity Element of Order 2

The consequence of the problem yields that the number of elements of order $2$ is odd, in particular, it is not zero.

Hence we obtain:

If the order of a group is even, then it has a non-identity element of order 2.

Torsion Subgroup of an Abelian Group, Quotient is a Torsion-Free Abelian Group
Let $A$ be an abelian group and let $T(A)$ denote the set of elements of $A$ that have finite order.
(a) Prove that $T(A)$ is a subgroup of $A$.
(The subgroup $T(A)$ is called the torsion subgroup of the abelian group $A$ and elements of $T(A)$ are called torsion […]

The Order of $ab$ and $ba$ in a Group are the Same
Let $G$ be a finite group. Let $a, b$ be elements of $G$.
Prove that the order of $ab$ is equal to the order of $ba$.
(Of course do not assume that $G$ is an abelian group.)
Proof.
Let $n$ and $m$ be the order of $ab$ and $ba$, respectively. That is,
\[(ab)^n=e, […]

Use Lagrange’s Theorem to Prove Fermat’s Little Theorem
Use Lagrange's Theorem in the multiplicative group $(\Zmod{p})^{\times}$ to prove Fermat's Little Theorem: if $p$ is a prime number then $a^p \equiv a \pmod p$ for all $a \in \Z$.
Before the proof, let us recall Lagrange's Theorem.
Lagrange's Theorem
If $G$ is a […]

Fundamental Theorem of Finitely Generated Abelian Groups and its application
In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.
Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]

Group of Order $pq$ Has a Normal Sylow Subgroup and Solvable
Let $p, q$ be prime numbers such that $p>q$.
If a group $G$ has order $pq$, then show the followings.
(a) The group $G$ has a normal Sylow $p$-subgroup.
(b) The group $G$ is solvable.
Definition/Hint
For (a), apply Sylow's theorem. To review Sylow's theorem, […]

Group Homomorphism Sends the Inverse Element to the Inverse Element
Let $G, G'$ be groups. Let $\phi:G\to G'$ be a group homomorphism.
Then prove that for any element $g\in G$, we have
\[\phi(g^{-1})=\phi(g)^{-1}.\]
Definition (Group homomorphism).
A map $\phi:G\to G'$ is called a group homomorphism […]

If Every Nonidentity Element of a Group has Order 2, then it’s an Abelian Group
Let $G$ be a group. Suppose that the order of nonidentity element of $G$ is $2$.
Then show that $G$ is an abelian group.
Proof.
Let $x$ and $y$ be elements of $G$. Then we have
\[1=(xy)^2=(xy)(xy).\]
Multiplying the equality by $yx$ from the right, we […]

A Group Homomorphism and an Abelian Group
Let $G$ be a group. Define a map $f:G \to G$ by sending each element $g \in G$ to its inverse $g^{-1} \in G$.
Show that $G$ is an abelian group if and only if the map $f: G\to G$ is a group homomorphism.
Proof.
$(\implies)$ If $G$ is an abelian group, then $f$ […]