Inverse Matrix Contains Only Integers if and only if the Determinant is $\pm 1$

Linear algebra problems and solutions

Problem 547

Let $A$ be an $n\times n$ nonsingular matrix with integer entries.

Prove that the inverse matrix $A^{-1}$ contains only integer entries if and only if $\det(A)=\pm 1$.

 
LoadingAdd to solve later

Sponsored Links


Hint.

  • If $B$ is a square matrix whose entries are integers, then the determinant of $B$ is an integer.
  • The inverse matrix of $A$ can be computed by the formula
    \[A^{-1}=\frac{1}{\det(A)}\Adj(A).\]

Proof.

Let $I$ be the $n\times n$ identity matrix.

$(\implies)$: If $A^{-1}$ is an integer matrix, then $\det(A)=\pm 1$

Suppose that every entry of the inverse matrix $A^{-1}$ is an integer.
It follows that $\det(A)$ and $\det(A^{-1})$ are both integers.
Since we have
\begin{align*}
\det(A)\det(A^{-1})=\det(AA^{-1})=\det(I)=1,
\end{align*}
we must have $\det(A)=\pm 1$.

$(\impliedby)$: If $\det(A)=\pm 1$, then $A^{-1}$ is an integer matrix

Suppose that $\det(A)=\pm 1$. The inverse matrix of $A$ is given by the formula
\[A^{-1}=\frac{1}{\det(A)}\Adj(A),\] where $\Adj(A)$ is the adjoint matrix of $A$.
Thus, we have
\[A^{-1}=\pm \Adj(A).\] Note that each entry of $\Adj(A)$ is a cofactor of $A$, which is an integer.

(Recall that a cofactor is of the form $\pm \det(M_{ij})$, where $M_{ij}$ is the $(i, j)$-minor matrix of $A$, hence entries of $M_{ij}$ are integers.)

Therefore, the inverse matrix $A^{-1}$ contains only integer entries.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Find Inverse Matrices Using Adjoint MatricesFind Inverse Matrices Using Adjoint Matrices Let $A$ be an $n\times n$ matrix. The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be \[C_{ij}=(-1)^{ij}\det(M_{ij}),\] where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column. Then consider the $n\times n$ matrix […]
  • Calculate Determinants of MatricesCalculate Determinants of Matrices Calculate the determinants of the following $n\times n$ matrices. \[A=\begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 &1 \\ 1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots […]
  • For Which Choices of $x$ is the Given Matrix Invertible?For Which Choices of $x$ is the Given Matrix Invertible? Determine the values of $x$ so that the matrix \[A=\begin{bmatrix} 1 & 1 & x \\ 1 &x &x \\ x & x & x \end{bmatrix}\] is invertible. For those values of $x$, find the inverse matrix $A^{-1}$.   Solution. We use the fact that a matrix is invertible […]
  • Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a RelationQuiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation (a) Find the inverse matrix of \[A=\begin{bmatrix} 1 & 0 & 1 \\ 1 &0 &0 \\ 2 & 1 & 1 \end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason. (b) Find a nonsingular $2\times 2$ matrix $A$ such that \[A^3=A^2B-3A^2,\] where […]
  • Nilpotent Matrices and Non-Singularity of Such MatricesNilpotent Matrices and Non-Singularity of Such Matrices Let $A$ be an $n \times n$ nilpotent matrix, that is, $A^m=O$ for some positive integer $m$, where $O$ is the $n \times n$ zero matrix. Prove that $A$ is a singular matrix and also prove that $I-A, I+A$ are both nonsingular matrices, where $I$ is the $n\times n$ identity […]
  • Compute Determinant of a Matrix Using Linearly Independent VectorsCompute Determinant of a Matrix Using Linearly Independent Vectors Let $A$ be a $3 \times 3$ matrix. Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have \[A\mathbf{x}=\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, A\mathbf{y}=\begin{bmatrix} 0 \\ 1 \\ 0 […]
  • Find All Values of $x$ so that a Matrix is SingularFind All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular.   Hint. Use the fact that a matrix is singular if and only […]
  • A One Side Inverse Matrix is the Inverse Matrix: If $AB=I$, then $BA=I$A One Side Inverse Matrix is the Inverse Matrix: If $AB=I$, then $BA=I$ An $n\times n$ matrix $A$ is said to be invertible if there exists an $n\times n$ matrix $B$ such that $AB=I$, and $BA=I$, where $I$ is the $n\times n$ identity matrix. If such a matrix $B$ exists, then it is known to be unique and called the inverse matrix of $A$, denoted […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
Find Inverse Matrices Using Adjoint Matrices

Let $A$ be an $n\times n$ matrix. The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be \[C_{ij}=(-1)^{ij}\det(M_{ij}),\] where...

Close