Is the Following Function $T:\R^2 \to \R^3$ a Linear Transformation?

Linear Transformation problems and solutions

Problem 627

Determine whether the function $T:\R^2 \to \R^3$ defined by
\[T\left(\, \begin{bmatrix}
x \\
y
\end{bmatrix} \,\right)
=
\begin{bmatrix}
x_+y \\
x+1 \\
3y
\end{bmatrix}\] is a linear transformation.

 
LoadingAdd to solve later

Sponsored Links


Solution.

The function $T:\R^2 \to \R^3$ is a not a linear transformation.

Recall that every linear transformation must map the zero vector to the zero vector.

However, we have
\[T\left(\, \begin{bmatrix}
0 \\
0
\end{bmatrix} \,\right)
=\begin{bmatrix}
0+0 \\
0+1 \\
3\cdot 0
\end{bmatrix}=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \neq \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.\] So the function $T$ does not map the zero vector $\begin{bmatrix}
0 \\
0
\end{bmatrix}$ to the zero vector $\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$.
Thus, $T$ is not a linear transformation.

Another solution

Another way to see this is, for example, as follows.
Let
\[\mathbf{u}=\begin{bmatrix}
1 \\
0
\end{bmatrix} \text{ and } \mathbf{v}=\begin{bmatrix}
0 \\
1
\end{bmatrix}.\] (In fact, you may take any two vectors.)

Then we have
\[T(\mathbf{u})+T(\mathbf{v})=T\left(\, \begin{bmatrix}
1 \\
0
\end{bmatrix} \,\right)+T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)
=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}+\begin{bmatrix}
1 \\
1 \\
3
\end{bmatrix}=\begin{bmatrix}
2 \\
3 \\
3
\end{bmatrix}.\] On the other hand, we have
\[T\left(\, \mathbf{u}+\mathbf{v} \,\right) =T\left(\, \begin{bmatrix}
1 \\
1
\end{bmatrix} \,\right)
=\begin{bmatrix}
2 \\
2 \\
3
\end{bmatrix}.\]

Therefore, we see that
\[T(\mathbf{u})+T(\mathbf{v}) \neq T\left(\, \mathbf{u}+\mathbf{v} \,\right),\] and hence $T$ is not a linear transformation.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
If the Sum of Entries in Each Row of a Matrix is Zero, then the Matrix is Singular

Let $A$ be an $n\times n$ matrix. Suppose that the sum of elements in each row of $A$ is zero....

Close