# Bases and Coordinate Vectors

## Bases and Coordinate Vectors

Definition

Let $V$ be a vector space over a scalar field $K$.

1. A basis $B$ for $V$ is a linearly independent spanning set for $V$.
2. Suppose that $B=\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for $V$. Let $\mathbf{v}\in V$ and write it as $\mathbf{v}=c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n$, where $c_1, \dots, c_n\in K$. Then the coordinate vector of $\mathbf{v}$ with respect to the basis $B$ is
$[\mathbf{v}]_B=\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \R^n.$
Summary

Let $V$ be a vector space over a scalar field $K$. Suppose that $B=\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for $V$. Let $S=\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ be a set of vectors in $V$. Let $T=\{[\mathbf{w}_1]_B, \dots, [\mathbf{w}_k]_B\}$ be the set of the coordinate vectors of $S$.

1. Any vector $\mathbf{v}$ can be uniquely written as $\mathbf{v}=c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n$, where $c_1, \dots, c_n\in K$.
2. The dimension of the coordinate vector $[\mathbf{v}]_B$ is the dimension of the vector space $V$.
3. The set $S$ is linearly independent if and only if $T$ is linearly independent.
4. $S$ is a basis for $\Span(S)$ if and only if $T$ is a basis for $\Span(T)$ in $\R^n$.

=solution

### Problems

1. Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space $V$ over a scalar field $K$. Then show that any vector $\mathbf{v}\in V$ can be written uniquely as
$\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3,$ where $c_1, c_2, c_3$ are scalars.

2. Show that the set
$S=\{1, 1-x, 3+4x+x^2\}$ is a basis of the vector space $P_2$ of all polynomials of degree $2$ or less.

3. Let $V$ be the vector space of all $2\times 2$ matrices, and let the subset $S$ of $V$ be defined by $S=\{A_1, A_2, A_3, A_4\}$, where
\begin{align*}
A_1=\begin{bmatrix}
1 & 2 \\
-1 & 3
A_2=\begin{bmatrix}
0 & -1 \\
1 & 4
A_3=\begin{bmatrix}
-1 & 0 \\
1 & -10
A_4=\begin{bmatrix}
3 & 7 \\
-2 & 6
\end{bmatrix}.
\end{align*}
Find a basis of the span $\Span(S)$ consisting of vectors in $S$ and find the dimension of $\Span(S)$.

4. Let $P_2$ be the vector space of all polynomials of degree $2$ or less with real coefficients. Let
$S=\{1+x+2x^2, \quad x+2x^2, \quad -1, \quad x^2\}$ be the set of four vectors in $P_2$. Then find a basis of the subspace $\Span(S)$ among the vectors in $S$.
(The Ohio State University)

5. Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
$Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},$ where
\begin{align*}
&p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\
&p_3(x)=2x^2, &p_4(x)=2x^2+x+1.
\end{align*}
(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.
(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.
(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.

6. Let $P_2$ be the vector space of all polynomials with real coefficients of degree $2$ or less. Let $S=\{p_1(x), p_2(x), p_3(x), p_4(x)\}$, where
\begin{align*}
\end{align*}
(a) Find a basis of $P_2$ among the vectors of $S$.
(b) Let $B’$ be the basis you obtained in part (a). For each vector of $S$ which is not in $B’$, find the coordinate vector of it with respect to the basis $B’$.
(The Ohio State University)

7. Let $P_2$ be the vector space of all polynomials of degree two or less. Consider the subset in $P_2$
$Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},$ where
\begin{align*}
&p_1(x)=1, &p_2(x)=x^2+x+1, \\
&p_3(x)=2x^2, &p_4(x)=x^2-x+1.
\end{align*}
(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.
(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.
(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.
(The Ohio State University)

8. Let $P_2$ be the vector space over $\R$ of all polynomials of degree $2$ or less.
Let $S=\{p_1(x), p_2(x), p_3(x)\}$, where
$p_1(x)=x^2+1, \quad p_2(x)=6x^2+x+2, \quad p_3(x)=3x^2+x.$ (a) Use the basis $B=\{x^2, x, 1\}$ of $P_2$ to prove that the set $S$ is a basis for $P_2$.
(b) Find the coordinate vector of $p(x)=x^2+2x+3\in P_2$ with respect to the basis $S$.

9. Let $\calP_3$ be the vector space of all polynomials of degree $3$ or less.
Let
$S=\{p_1(x), p_2(x), p_3(x), p_4(x)\},$ where
\begin{align*}
p_1(x)&=1+3x+2x^2-x^3 & p_2(x)&=x+x^3\\
p_3(x)&=x+x^2-x^3 & p_4(x)&=3+8x+8x^3.
\end{align*}
(a) Find a basis $Q$ of the span $\Span(S)$ consisting of polynomials in $S$.
(b) For each polynomial in $S$ that is not in $Q$, find the coordinate vector with respect to the basis $Q$.
(The Ohio State University)

10. Let $V$ be the vector space of all $2\times 2$ real matrices. Let $S=\{A_1, A_2, A_3, A_4\}$, where
$A_1=\begin{bmatrix} 1 & 2\\ -1& 3 \end{bmatrix}, A_2=\begin{bmatrix} 0 & -1\\ 1& 4 \end{bmatrix}, A_3=\begin{bmatrix} -1 & 0\\ 1& -10 \end{bmatrix}, A_4=\begin{bmatrix} 3 & 7\\ -2& 6 \end{bmatrix}.$ Then find a basis for the span $\Span(S)$.

11. Let $C[-1, 1]$ be the vector space over $\R$ of all continuous functions defined on the interval $[-1, 1]$. Let
$V:=\{f(x)\in C[-1,1] \mid f(x)=a e^x+b e^{2x}+c e^{3x}, a, b, c\in \R\}$ be a subset in $C[-1, 1]$.
(a) Prove that $V$ is a subspace of $C[-1, 1]$.
(b) Prove that the set $B=\{e^x, e^{2x}, e^{3x}\}$ is a basis of $V$.
(c) Prove that $B’=\{e^x-2e^{3x}, e^x+e^{2x}+2e^{3x}, 3e^{2x}+e^{3x}\}$ is a basis for $V$.

12. Let $P_n(\R)$ be the vector space over $\R$ consisting of all degree $n$ or less real coefficient polynomials. Let
$U=\{ p(x) \in P_n(\R) \mid p(1)=0\}$ be a subspace of $P_n(\R)$. Find a basis for $U$ and determine the dimension of $U$.

13. Let $V$ be a vector space over $\R$ and let $B$ be a basis of $V$. Let $S=\{v_1, v_2, v_3\}$ be a set of vectors in $V$. If the coordinate vectors of these vectors with respect to the basis $B$ is given as follows, then find the dimension of $V$ and the dimension of the span of $S$.
$[v_1]_B=\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, [v_2]_B=\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, [v_3]_B=\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$
14. Let $V$ be a vector space and $B$ be a basis for $V$.
Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ be vectors in $V$.
Suppose that $A$ is the matrix whose columns are the coordinate vectors of $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ with respect to the basis $B$. After applying the elementary row operations to $A$, we obtain the following matrix in reduced row echelon form $\begin{bmatrix} 1 & 0 & 2 & 1 & 0 \\ 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.
(a) What is the dimension of $V$?
(b) What is the dimension of $\Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5\}$?
(The Ohio State University)

15. Let $V$ be the set of all $n \times n$ diagonal matrices whose traces are zero. That is,
\begin{equation*}
V:=\left\{ A=\begin{bmatrix}
a_{11} & 0 & \dots & 0 \\
0 &a_{22} & \dots & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \dots & a_{nn}
\begin{array}{l}
a_{11}, \dots, a_{nn} \in \C,\\
\tr(A)=0 \\
\end{array}
\right\}
\end{equation*}
Let $E_{ij}$ denote the $n \times n$ matrix whose $(i,j)$-entry is $1$ and zero elsewhere.
(a) Show that $V$ is a subspace of the vector space $M_n$ over $\C$ of all $n\times n$ matrices. (You may assume without a proof that $M_n$ is a vector space.)
(b) Show that matrices
$E_{11}-E_{22}, \, E_{22}-E_{33}, \, \dots,\, E_{n-1\, n-1}-E_{nn}$ are a basis for the vector space $V$.
(c) Find the dimension of $V$.

16. Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$. Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$.
(a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ is a basis for $W$.
(b) Prove that the set $\{\sin^2(x)-\cos^2(x), 1\}$ is a basis for $W$.