Linear Combination of Eigenvectors is Not an Eigenvector

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 258

Suppose that $\lambda$ and $\mu$ are two distinct eigenvalues of a square matrix $A$ and let $\mathbf{x}$ and $\mathbf{y}$ be eigenvectors corresponding to $\lambda$ and $\mu$, respectively.
If $a$ and $b$ are nonzero numbers, then prove that $a \mathbf{x}+b\mathbf{y}$ is not an eigenvector of $A$ (corresponding to any eigenvalue of $A$).

 
LoadingAdd to solve later

Sponsored Links


Hint.

We use the following fact in the proof.
Fact: Two eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof.

Seeking a contradiction, we assume that $a \mathbf{x}+b\mathbf{y}$ is an eigenvector corresponding to an eigenvalue $\zeta$.
Thus we have
\begin{align*}
A(a \mathbf{x}+b\mathbf{y})=\zeta (a \mathbf{x}+b\mathbf{y}). \tag{*}
\end{align*}


We calculate the left hand side of this equality as follows.
We have
\begin{align*}
A(a \mathbf{x}+b\mathbf{y})&=a A\mathbf{x}+bA\mathbf{y}\\
&=a\lambda \mathbf{x}+b\mu \mathbf{y}
\end{align*}
since $A\mathbf{x}=\lambda \mathbf{x}, A\mathbf{y}=\mu \mathbf{y}$ by defintion.

Therefore, from (*) we obtain
\begin{align*}
a(\lambda -\zeta) \mathbf{x}+b(\mu-\zeta)\mathbf{y}=\mathbf{0}.
\end{align*}


Recall that eigenvectors corresponding to distinct eigenvalues are linearly independent. Thus $\mathbf{x}$ and $\mathbf{y}$ are linearly independent.

Thus, the coefficients of the above linear combinations must be zero:
\[a(\lambda -\zeta)=0 \text{ and } b(\mu-\zeta)=0.\]

Since $a\neq0, b\neq 0$, this implies that we have
\[\lambda=\zeta=\mu,\] and this is a contradiction because $\lambda$ and $\mu$ are supposed to be distinct.

Hence, $a \mathbf{x}+b\mathbf{y}$ cannot be an eigenvector of any eigenvalue of $A$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
The possibilities for the solution set of a system of linear equations
Use Cramer’s Rule to Solve a $2\times 2$ System of Linear Equations

Use Cramer's rule to solve the system of linear equations \begin{align*} 3x_1-2x_2&=5\\ 7x_1+4x_2&=-1. \end{align*}  

Close