Linear Independent Vectors, Invertible Matrix, and Expression of a Vector as a Linear Combinations

Ohio State University exam problems and solutions in mathematics

Problem 66

Consider the matrix
\[A=\begin{bmatrix}
1 & 2 & 1 \\
2 &5 &4 \\
1 & 1 & 0
\end{bmatrix}.\]


(a) Calculate the inverse matrix $A^{-1}$. If you think the matrix $A$ is not invertible, then explain why.


(b) Are the vectors
\[ \mathbf{A}_1=\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}, \mathbf{A}_2=\begin{bmatrix}
2 \\
5 \\
1
\end{bmatrix},
\text{ and } \mathbf{A}_3=\begin{bmatrix}
1 \\
4 \\
0
\end{bmatrix}\] linearly independent?


(c) Write the vector $\mathbf{b}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}$ as a linear combination of $\mathbf{A}_1$, $\mathbf{A}_2$, and $\mathbf{A}_3$.

(The Ohio State University, Linear Algebra Exam)

LoadingAdd to solve later

Sponsored Links


Hint.

  1. For (a), consider the augmented matrix $[A|I]$ and reduce it.
  2. Note that given vectors are column vectors of the matrix $A$.
  3. Use the inverse matrix $A^{-1}$ to solve a system.

Solution.

(a) Calculate the inverse matrix $A^{-1}$

We consider the augmented matrix
\[ \left[\begin{array}{rrr|rrr}
1 & 2 & 1 & 1 &0 & 0 \\
2 & 5 & 4 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
\end{array} \right] \] and reduce this matrix using the elementary row operations as follows.
\begin{align*}
&\left[ \begin{array}{rrr|rrr}
1 & 2 & 1 & 1 &0 & 0 \\
2 & 5 & 4 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
\end{array} \right] \xrightarrow[R_3-R_1]{R_2-2R_1}
\left[\begin{array}{rrr|rrr}
1 & 2 & 1 & 1 &0 & 0 \\
0 & 1 & 2 & -2 & 1 & 0 \\
0 & -1 & -1 & -1 & 0 & 1 \\
\end{array} \right] \xrightarrow[R_3+R_2]{R_1-2R_2} \\[6pt] &
\left[\begin{array}{rrr|rrr}
1 & 0 & -3 & 5 &-2 & 0 \\
0 & 1 & 2 & -2 & 1 & 0 \\
0 & 0 & 1 & -3 & 1 & 1 \\
\end{array} \right] \xrightarrow[R_2-2R_3]{R_1+3R_3} \left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -4 &1 & 3 \\
0 & 1 & 0 & 4 & -1 & -2 \\
0 & 0 & 1 & -3 & 1 & 1 \\
\end{array} \right].
\end{align*}

Since the left $3 \times 3$ part of the last matrix is the identity matrix, the inverse matrix of $A$ is
\[A^{-1}=\begin{bmatrix}
-4 & 1 & 3 \\
4 &-1 &-2 \\
-3 & 1 & 1
\end{bmatrix}.\]

(b) Are the Vectors Linearly Independent?

To check whether $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3$ are linearly independent, we consider the linear combination
\[x_1\mathbf{A}_1+x_2\mathbf{A}_2+x_3\mathbf{A}_3=\mathbf{0}\] and if this equation has only zero solution, the vectors are linearly independent.

This equation can be written as the matrix equation
\[A\mathbf{x}=\mathbf{0},\] where $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$.
Since by part (a), the inverse matrix $A^{-1}$ exists. Thus multiplying by $A^{-1}$ on the left we get $\mathbf{x}=\mathbf{0}$. Thus the solution is $\mathbf{x}=\mathbf{0}$ and the vectors $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3$ are linearly independent.

Another Solution of (b)

Note that $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3$ are columns vectors of the matrix $A$. We proved in part (a) that $A$ is invertible. We know that the column vectors of an invertible matrix are linearly independent. Thus the vectors $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3$ are linearly independent.

(c) Write the vector $\mathbf{b}$ as a linear combination of $\mathbf{A}_1$, $\mathbf{A}_2$, and $\mathbf{A}_3$

We want to solve the vector equation
\[x_1\mathbf{A}_1+x_2\mathbf{A}_2+x_3\mathbf{A}_3=\mathbf{b}.\] This can be written as the matrix equation
\[A\mathbf{x}=\mathbf{b}.\]

Since $A$ is invertible, we have
\[\mathbf{x}=A^{-1}\mathbf{b}=\begin{bmatrix}
-4 & 1 & 3 \\
4 &-1 &-2 \\
-3 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}=\begin{bmatrix}
0 \\
1 \\
-1
\end{bmatrix}.\]

Thus $x_1=0$, $x_2=1$, and $x_3=-1$ and the linear combination is
\[\mathbf{b}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}=\mathbf{A}_2-\mathbf{A}_3.\]


LoadingAdd to solve later

Sponsored Links

More from my site

  • A Linear Transformation from Vector Space over Rational Numbers to itselfA Linear Transformation from Vector Space over Rational Numbers to itself Let $\Q$ denote the set of rational numbers (i.e., fractions of integers). Let $V$ denote the set of the form $x+y \sqrt{2}$ where $x,y \in \Q$. You may take for granted that the set $V$ is a vector space over the field $\Q$. (a) Show that $B=\{1, \sqrt{2}\}$ is a basis for the […]
  • Solving a System of Linear Equations By Using an Inverse MatrixSolving a System of Linear Equations By Using an Inverse Matrix Consider the system of linear equations \begin{align*} x_1&= 2, \\ -2x_1 + x_2 &= 3, \\ 5x_1-4x_2 +x_3 &= 2 \end{align*} (a) Find the coefficient matrix and its inverse matrix. (b) Using the inverse matrix, solve the system of linear equations. (The Ohio […]
  • Possibilities For the Number of Solutions for a Linear SystemPossibilities For the Number of Solutions for a Linear System Determine whether the following systems of equations (or matrix equations) described below has no solution, one unique solution or infinitely many solutions and justify your answer. (a) \[\left\{ \begin{array}{c} ax+by=c \\ dx+ey=f, \end{array} \right. \] where $a,b,c, d$ […]
  • Express a Vector as a Linear Combination of Other VectorsExpress a Vector as a Linear Combination of Other Vectors Express the vector $\mathbf{b}=\begin{bmatrix} 2 \\ 13 \\ 6 \end{bmatrix}$ as a linear combination of the vectors \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}, \mathbf{v}_2= \begin{bmatrix} 1 \\ 2 \\ 1 […]
  • Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a RelationQuiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation (a) Find the inverse matrix of \[A=\begin{bmatrix} 1 & 0 & 1 \\ 1 &0 &0 \\ 2 & 1 & 1 \end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason. (b) Find a nonsingular $2\times 2$ matrix $A$ such that \[A^3=A^2B-3A^2,\] where […]
  • Find a Basis For the Null Space of a Given $2\times 3$ MatrixFind a Basis For the Null Space of a Given $2\times 3$ Matrix Let \[A=\begin{bmatrix} 1 & 1 & 0 \\ 1 &1 &0 \end{bmatrix}\] be a matrix. Find a basis of the null space of the matrix $A$. (Remark: a null space is also called a kernel.)   Solution. The null space $\calN(A)$ of the matrix $A$ is by […]
  • Find the Inverse Matrix of a $3\times 3$ Matrix if ExistsFind the Inverse Matrix of a $3\times 3$ Matrix if Exists Find the inverse matrix of \[A=\begin{bmatrix} 1 & 1 & 2 \\ 0 &0 &1 \\ 1 & 0 & 1 \end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason. (The Ohio State University, Linear Algebra Midterm Exam […]
  • Given All Eigenvalues and Eigenspaces, Compute a Matrix ProductGiven All Eigenvalues and Eigenspaces, Compute a Matrix Product Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces \[E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Solving a System of Linear Equations By Using an Inverse Matrix

Consider the system of linear equations \begin{align*} x_1&= 2, \\ -2x_1 + x_2 &= 3, \\ 5x_1-4x_2 +x_3 &= 2...

Close