Linear Transformation $T(X)=AX-XA$ and Determinant of Matrix Representation

Linear algebra problems and solutions

Problem 330

Let $V$ be the vector space of all $n\times n$ real matrices.
Let us fix a matrix $A\in V$.
Define a map $T: V\to V$ by
\[ T(X)=AX-XA\] for each $X\in V$.

(a) Prove that $T:V\to V$ is a linear transformation.

(b) Let $B$ be a basis of $V$. Let $P$ be the matrix representation of $T$ with respect to $B$. Find the determinant of $P$.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Prove that $T:V\to V$ is a linear transformation.

To prove $T$ is a linear transformation, we need to show the following properties.

  1. For any $X, Y\in V$, we have $T(X+Y)=T(X)+T(Y)$.
  2. For any $X\in V, r\in \R$, we have $T(rX)=rT(X)$.

To check condition 1, let $X, Y \in V$. Then we have
\begin{align*}
T(X+Y)&=A(X+Y)-(X+Y)A && \text{by definition of $T$}\\
&=AX+AY-XA-YA\\
&=AX-XA+AY-YA\\
&=T(X)+T(Y) && \text{by definition of $T$}.
\end{align*}
Hence condition 1 is met.

To verify condition 2, let $X\in V, r\in \R$.
Then we have
\begin{align*}
T(rX)&=A(rX)-(rX)A && \text{by definition of $T$}\\
&=rAX-rXA && \text{$r$ is a scalar}\\
&=r(AX-XA)\\
&=rT(X) && \text{by definition of $T$}.
\end{align*}
So condition 2 is also met, hence $T$ is a linear transformation.

(b) Find the determinant of the matrix representation of $T$.

Let $B$ be a basis of the vector space $V$ and let $P$ be the matrix of the linear transformation $T$ with respect to $B$. We prove that the determinant of $P$ is zero.

Let $I$ be the $n\times n$ identity matrix. Then we have
\begin{align*}
T(I)=AI-IA=A-A=O,
\end{align*}
where $O$ is the $n\times n$ zero matrix.
Since $T(O)=O$, this implies that the linear transformation $T$ is not injective, hence $P$ is a singular matrix.


Let us explain the details.
Let $v=[I]_B \in \R^{n^2}$ be the coordinate vector of $I$ with respect to the basis $B$.
Then since $I\neq O$, the vector $v$ is not zero.
Then $T(I)=O$ implies that
\[Pv=0\in \R^{n^2}.\] As the nonzero vector $v$ is a solution of the matrix equation $Px=0$, the matrix $P$ is singular.

Since $P$ is singular, the determinant of $P$ is zero.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Transformation problems and solutions
Linear Transformation to 1-Dimensional Vector Space and Its Kernel

Let $n$ be a positive integer. Let $T:\R^n \to \R$ be a non-zero linear transformation. Prove the followings. (a) The...

Close