The mathematical properties of 2017

LoadingAdd to solve later

Sponsored Links

The mathematical properties of 2017


LoadingAdd to solve later

Sponsored Links

More from my site

  • Welcome to Problems in MathematicsWelcome to Problems in Mathematics Welcome to my website. I post problems and its solutions/proofs in mathematics almost every day. Most of the problems are undergraduate level mathematics. Here are several topics I cover on this website. Topics Linear Algebra Group Theory Ring Theory Field Theory, Galois […]
  • Mathematics About the Number 2017Mathematics About the Number 2017 Happy New Year 2017!! Here is the list of mathematical facts about the number 2017 that you can brag about to your friends or family as a math geek. 2017 is a prime number Of course, I start with the fact that the number 2017 is a prime number. The previous prime year was […]
  • Compute the Product  $A^{2017}\mathbf{u}$ of a Matrix Power and a VectorCompute the Product $A^{2017}\mathbf{u}$ of a Matrix Power and a Vector Let \[A=\begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix} \text{ and } \mathbf{u}=\begin{bmatrix} 1\\ 0 \end{bmatrix}.\] Compute $A^{2017}\mathbf{u}$.   (The Ohio State University, Linear Algebra Exam) Solution. We first compute $A\mathbf{u}$. We […]
  • Companion Matrix for a PolynomialCompanion Matrix for a Polynomial Consider a polynomial \[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\] where $a_i$ are real numbers. Define the matrix \[A=\begin{bmatrix} 0 & 0 & \dots & 0 &-a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & […]
  • Nilpotent Matrix and Eigenvalues of the MatrixNilpotent Matrix and Eigenvalues of the Matrix An $n\times n$ matrix $A$ is called nilpotent if $A^k=O$, where $O$ is the $n\times n$ zero matrix. Prove the followings. (a) The matrix $A$ is nilpotent if and only if all the eigenvalues of $A$ is zero. (b) The matrix $A$ is nilpotent if and only if […]
  • Powers of a Diagonal MatrixPowers of a Diagonal Matrix Let $A=\begin{bmatrix} a & 0\\ 0& b \end{bmatrix}$. Show that (1) $A^n=\begin{bmatrix} a^n & 0\\ 0& b^n \end{bmatrix}$ for any $n \in \N$. (2) Let $B=S^{-1}AS$, where $S$ be an invertible $2 \times 2$ matrix. Show that $B^n=S^{-1}A^n S$ for any $n \in […]
  • Linear Transformation that Maps Each Vector to Its Reflection with Respect to $x$-AxisLinear Transformation that Maps Each Vector to Its Reflection with Respect to $x$-Axis Let $F:\R^2\to \R^2$ be the function that maps each vector in $\R^2$ to its reflection with respect to $x$-axis. Determine the formula for the function $F$ and prove that $F$ is a linear transformation.   Solution 1. Let $\begin{bmatrix} x \\ y […]
  • Eigenvalues and Eigenvectors of The Cross Product Linear TransformationEigenvalues and Eigenvectors of The Cross Product Linear Transformation We fix a nonzero vector $\mathbf{a}$ in $\R^3$ and define a map $T:\R^3\to \R^3$ by \[T(\mathbf{v})=\mathbf{a}\times \mathbf{v}\] for all $\mathbf{v}\in \R^3$. Here the right-hand side is the cross product of $\mathbf{a}$ and $\mathbf{v}$. (a) Prove that $T:\R^3\to \R^3$ is […]

Leave a Reply

Your email address will not be published. Required fields are marked *