Matrices Satisfying the Relation $HE-EH=2E$

Linear algebra problems and solutions

Problem 68

Let $H$ and $E$ be $n \times n$ matrices satisfying the relation
\[HE-EH=2E.\] Let $\lambda$ be an eigenvalue of the matrix $H$ such that the real part of $\lambda$ is the largest among the eigenvalues of $H$.
Let $\mathbf{x}$ be an eigenvector corresponding to $\lambda$. Then prove that
\[E\mathbf{x}=\mathbf{0}.\] LoadingAdd to solve later

Sponsored Links

Proof.

Using the given relation we have
\begin{align*}
HE\mathbf{x}-EH\mathbf{x}&=2E\mathbf{x}\\
\Rightarrow
HE\mathbf{x}-\lambda E\mathbf{x}&=2E\mathbf{x}\\
\Rightarrow
HE\mathbf{x}&=(\lambda+2)E\mathbf{x}\tag{*}.
\end{align*}

Let $\mathbf{v}=E\mathbf{x}$ and assume that $\mathbf{v}\neq \mathbf{0}$. Then we have from (*)
\[H\mathbf{v}=(\lambda+2)\mathbf{v} \text{ for the nonzero vector } \mathbf{v}.\] This means that $\lambda+2$ is an eigenvalue of the matrix $H$ and $\mathbf{v}$ is a corresponding eigenvector.

However, the real part of the eigenvalue $\lambda+2$ is greater than that of $\lambda$. This contradicts the choice of $\lambda$.
Therefore the vector $\mathbf{v}=E\mathbf{x}$ must be zero.

Comment.

You might wonder why we consider the relation $HE-EH=2E$.
In fact, this relation is a part of the relations of the Lie algebra $\mathfrak{sl}(2)$.

Although you don’t have to know anything about Lie algebra to solve this problem,
it might be good to know that these computations are actually used in a more advanced mathematic.

Related Question.

See the problem Matrices satisfying HF−FH=−2F for a similar question.

Another relation comes from the Lie algebra $\mathfrak{sl}(2)$ is studied there.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Matrices Satisfying $HF-FH=-2F$Matrices Satisfying $HF-FH=-2F$ Let $F$ and $H$ be an $n\times n$ matrices satisfying the relation \[HF-FH=-2F.\] (a) Find the trace of the matrix $F$. (b) Let $\lambda$ be an eigenvalue of $H$ and let $\mathbf{v}$ be an eigenvector corresponding to $\lambda$. Show that there exists an positive integer $N$ […]
  • Idempotent Matrix and its EigenvaluesIdempotent Matrix and its Eigenvalues Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$. (a) Find a nonzero, nonidentity idempotent matrix. (b) Show that eigenvalues of an idempotent matrix $A$ is either $0$ or $1$. (The Ohio State University, Linear Algebra Final Exam […]
  • Eigenvalues of a Hermitian Matrix are Real NumbersEigenvalues of a Hermitian Matrix are Real Numbers Show that eigenvalues of a Hermitian matrix $A$ are real numbers. (The Ohio State University Linear Algebra Exam Problem)   We give two proofs. These two proofs are essentially the same. The second proof is a bit simpler and concise compared to the first one. […]
  • Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam)Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam) Let \[\begin{bmatrix} 0 & 0 & 1 \\ 1 &0 &0 \\ 0 & 1 & 0 \end{bmatrix}.\] (a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers? (b) Calculate $A^{2009}$. (Princeton University, […]
  • Transpose of a Matrix and Eigenvalues and Related QuestionsTranspose of a Matrix and Eigenvalues and Related Questions Let $A$ be an $n \times n$ real matrix. Prove the followings. (a) The matrix $AA^{\trans}$ is a symmetric matrix. (b) The set of eigenvalues of $A$ and the set of eigenvalues of $A^{\trans}$ are equal. (c) The matrix $AA^{\trans}$ is non-negative definite. (An $n\times n$ […]
  • Is an Eigenvector of a Matrix an Eigenvector of its Inverse?Is an Eigenvector of a Matrix an Eigenvector of its Inverse? Suppose that $A$ is an $n \times n$ matrix with eigenvalue $\lambda$ and corresponding eigenvector $\mathbf{v}$. (a) If $A$ is invertible, is $\mathbf{v}$ an eigenvector of $A^{-1}$? If so, what is the corresponding eigenvalue? If not, explain why not. (b) Is $3\mathbf{v}$ an […]
  • All the Eigenvectors of a Matrix Are Eigenvectors of Another MatrixAll the Eigenvectors of a Matrix Are Eigenvectors of Another Matrix Let $A$ and $B$ be an $n \times n$ matrices. Suppose that all the eigenvalues of $A$ are distinct and the matrices $A$ and $B$ commute, that is $AB=BA$. Then prove that each eigenvector of $A$ is an eigenvector of $B$. (It could be that each eigenvector is an eigenvector for […]
  • Eigenvalues of Real Skew-Symmetric Matrix are Zero or Purely Imaginary and the Rank is EvenEigenvalues of Real Skew-Symmetric Matrix are Zero or Purely Imaginary and the Rank is Even Let $A$ be a real skew-symmetric matrix, that is, $A^{\trans}=-A$. Then prove the following statements. (a) Each eigenvalue of the real skew-symmetric matrix $A$ is either $0$ or a purely imaginary number. (b) The rank of $A$ is even.   Proof. (a) Each […]

You may also like...

1 Response

  1. 06/12/2017

    […] the problem “Matrices satisfying the relation HE-EH=2E” for similar […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
True or False: Eigenvalues of a Real Matrix Are Real Numbers

Answer the following questions regarding eigenvalues of a real matrix. (a) True or False. If each entry of an $n...

Close