Matrix Representation, Rank, and Nullity of a Linear Transformation $T:\R^2\to \R^3$

Ohio State University exam problems and solutions in mathematics

Problem 605

Let $T:\R^2 \to \R^3$ be a linear transformation such that
\[T\left(\, \begin{bmatrix}
3 \\
2
\end{bmatrix} \,\right)
=\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} \text{ and }
T\left(\, \begin{bmatrix}
4\\
3
\end{bmatrix} \,\right)
=\begin{bmatrix}
0 \\
-5 \\
1
\end{bmatrix}.\]

(a) Find the matrix representation of $T$ (with respect to the standard basis for $\R^2$).

(b) Determine the rank and nullity of $T$.

(The Ohio State University, Linear Algebra Midterm)
 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) Find the matrix representation of $T$.

The matrix representation $A$ of the linear transformation is given by
\[A=[T(\mathbf{e}_1), T(\mathbf{e}_2)],\] where
\[\mathbf{e}_1=\begin{bmatrix}
1\\ 0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0\\ 1
\end{bmatrix}\] are the standard basis vectors for $\R^2$.


To determine $T(\mathbf{e}_1)$, we first express $\mathbf{e}_1$ as a linear combination of $\begin{bmatrix}
3 \\
2
\end{bmatrix}$ and $\begin{bmatrix}
4 \\
3
\end{bmatrix}$ as follows.
Let
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0
\end{bmatrix}=a\begin{bmatrix}
3 \\
2
\end{bmatrix}+b\begin{bmatrix}
4 \\
3
\end{bmatrix}.\] This can be written as
\[\begin{bmatrix}
3 & 4\\
2& 3
\end{bmatrix}\begin{bmatrix}
a \\
b
\end{bmatrix}=\begin{bmatrix}
1 \\
0
\end{bmatrix}.\] The determinant of the coefficient matrix $\begin{bmatrix}
3 & 4\\
2& 3
\end{bmatrix}$ is $3\cdot 3-4\cdot 2=1\neq 0$ and thus it is invertible.
Hence we have
\[\begin{bmatrix}
a \\
b
\end{bmatrix}
=\begin{bmatrix}
3 & 4\\
2& 3
\end{bmatrix}^{-1}\begin{bmatrix}
1 \\
0
\end{bmatrix}
=\begin{bmatrix}
3 & -4\\
-2& 3
\end{bmatrix}\begin{bmatrix}
1 \\
0
\end{bmatrix}=\begin{bmatrix}
3 \\
-2
\end{bmatrix}.\] Hence $a=3$ and $b=-2$.
It yields that
\[\mathbf{e}_1=3\begin{bmatrix}
3 \\
2
\end{bmatrix}-2\begin{bmatrix}
4 \\
3
\end{bmatrix}.\]


It follows that
\begin{align*}
T(\mathbf{e}_1)&=T\left(\,3\begin{bmatrix}
3 \\
2
\end{bmatrix}-2\begin{bmatrix}
4 \\
3
\end{bmatrix} \,\right)\\[6pt] &=3T\left(\, \begin{bmatrix}
3 \\
2
\end{bmatrix}\,\right)-2T\left(\, \begin{bmatrix}
4 \\
3
\end{bmatrix} \,\right) &&\text{by linearity of $T$}\\[6pt] &=3\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}-2\begin{bmatrix}
0 \\
-5 \\
1
\end{bmatrix}=\begin{bmatrix}
3 \\
16 \\
7
\end{bmatrix}.
\end{align*}


Similarly, we compute $T(\mathbf{e}_2)$ as follows.
Let
\[\mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}=c\begin{bmatrix}
3 \\
2
\end{bmatrix}+d\begin{bmatrix}
4 \\
3
\end{bmatrix}.\] This can be written as
\[\begin{bmatrix}
3 & 4\\
2& 3
\end{bmatrix}\begin{bmatrix}
a \\
b
\end{bmatrix}=\begin{bmatrix}
0 \\
1
\end{bmatrix}.\] Hence, we obtain
\[\begin{bmatrix}
c \\
d
\end{bmatrix}=\begin{bmatrix}
3 & 4\\
2& 3
\end{bmatrix}^{-1}\begin{bmatrix}
0 \\
1
\end{bmatrix}=\begin{bmatrix}
3 & -4\\
-2& 3
\end{bmatrix}\begin{bmatrix}
0 \\
1
\end{bmatrix}=\begin{bmatrix}
-4 \\
3
\end{bmatrix},\] and $c=-4, d=3$.

Hence
\[\mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}=-4\begin{bmatrix}
3 \\
2
\end{bmatrix}+3\begin{bmatrix}
4 \\
3
\end{bmatrix}\] and we have
\begin{align*}
T(\mathbf{e}_2)&=T\left(\,-4\begin{bmatrix}
3 \\
2
\end{bmatrix}+3\begin{bmatrix}
4 \\
3
\end{bmatrix} \,\right)\\[6pt] &=-4T\left(\,\begin{bmatrix}
3 \\
2
\end{bmatrix}\,\right)+3T\left(\,\begin{bmatrix}
4 \\
3
\end{bmatrix}\,\right) &&\text{by linearity of $T$}\\[6pt] &=-4\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}+3\begin{bmatrix}
0 \\
-5 \\
1
\end{bmatrix}=\begin{bmatrix}
-4 \\
-23 \\
-9
\end{bmatrix}.
\end{align*}


Therefore the matrix representation $A$ of $T$ is
\[A=[T(\mathbf{e}_1), T(\mathbf{e}_2)]=\begin{bmatrix}
3 & -4 \\
16 & -23 \\
7 &-9
\end{bmatrix}.\]

(b) Determine the rank and nullity of $T$.

Note that the rank and nullity of $T$ are the same as the those of the matrix representation $A$ of $T$.
In part (a), we obtained
\[A=\begin{bmatrix}
3 & -4 \\
16 & -23 \\
7 &-9
\end{bmatrix}.\] Let us first determine the rank of $A$.
We have
\begin{align*}
A=\begin{bmatrix}
3 & -4 \\
16 & -23 \\
7 &-9
\end{bmatrix}
\xrightarrow{R_3-2R_1}
\begin{bmatrix}
3 & -4 \\
16 & -23 \\
1 &-1
\end{bmatrix}
\xrightarrow{R_1\leftrightarrow R_3}
\begin{bmatrix}
1 & -1 \\
16 & -23 \\
3 &-4
\end{bmatrix}\\[6pt] \xrightarrow[R_3-3R_1]{R_2-16R_1}
\begin{bmatrix}
1 & -1 \\
0 & -7 \\
0 &-1
\end{bmatrix}
\xrightarrow{-R_3}
\begin{bmatrix}
1 & -1 \\
0 & -7 \\
0 &1
\end{bmatrix}
\xrightarrow[R_2+7R_3]{R_1+R_3}
\begin{bmatrix}
1 & 0 \\
0 & 0 \\
0 &1
\end{bmatrix}
\xrightarrow{R_2\leftrightarrow R_3}
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 &0
\end{bmatrix}.
\end{align*}
Hence, the reduced row echelon form matrix of $A$ has two nonzero rows.
So the rank of $A$ is $2$.


By the rank-nullity theorem, we know that
\[\text{(rank of $A$)+(nullity of $A$)}=2.\] As the rank of $A$ is $2$, we see that the nullity of $A$ is $0$.

Comment.

This is one of the midterm 2 exam problems for Linear Algebra (Math 2568) in Autumn 2017.

List of Midterm 2 Problems for Linear Algebra (Math 2568) in Autumn 2017

  1. Vector Space of 2 by 2 Traceless Matrices
  2. Find an Orthonormal Basis of the Given Two Dimensional Vector Space
  3. Are the Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$ Linearly Independent?
  4. Find Bases for the Null Space, Range, and the Row Space of a $5\times 4$ Matrix
  5. Matrix Representation, Rank, and Nullity of a Linear Transformation $T:\R^2\to \R^3$ ←The current problem
  6. Determine the Dimension of a Mysterious Vector Space From Coordinate Vectors
  7. Find a Basis of the Subspace Spanned by Four Polynomials of Degree 3 or Less

LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Find Bases for the Null Space, Range, and the Row Space of a $5\times 4$ Matrix

Let \[A=\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 &1 & 1 & 1 \\ 1 & -1...

Close