# Matrix Representations for Linear Transformations of the Vector Space of Polynomials

## Problem 71

Let $P_2(\R)$ be the vector space over $\R$ consisting of all polynomials with real coefficients of degree $2$ or less.

Let $B=\{1,x,x^2\}$ be a basis of the vector space $P_2(\R)$.

For each linear transformation $T:P_2(\R) \to P_2(\R)$ defined below, find the matrix representation of $T$ with respect to the basis $B$. For $f(x)\in P_2(\R)$, define $T$ as follows.

**(a)** \[T(f(x))=\frac{\mathrm{d}^2}{\mathrm{d}x^2} f(x)-3\frac{\mathrm{d}}{\mathrm{d}x}f(x)\]

**(b)** \[T(f(x))=\int_{-1}^1\! (t-x)^2f(t) \,\mathrm{d}t\]

**(c)** \[T(f(x))=e^x \frac{\mathrm{d}}{\mathrm{d}x}(e^{-x}f(x))\]

Add to solve later

Sponsored Links

Contents

## Hint.

To find the matrix, we just need to compute $T(1), T(x), T(x^2)$ and read the coefficients of $1, x, x^2$.

## Solution.

### (a) $T(f(x))=\frac{\mathrm{d}^2}{\mathrm{d}x^2} f(x)-3\frac{\mathrm{d}}{\mathrm{d}x}f(x)$

Since the derivative the constant function $1$ is zero, we have

\[T(1)=0.\]
Since the second derivative of the function $x$ is zero, we have

\[T(x)=-3.\]
Finally, we calculate

\[T(x^2)=2-6x.\]
There with respect to the basis $\{1, x, x^2\}$, the matrix for $T$ is

\[\begin{bmatrix}

0 & -3 & 2 \\

0 &0 &-6 \\

0 & 0 & 0

\end{bmatrix}.\]

### (b) $T(f(x))=\int_{-1}^1\! (t-x)^2f(t) \,\mathrm{d}t$

We first compute

\begin{align*}

T(f(x))&=\int_{-1}^{1} \! (t^2-2tx-+x^2)f(t) \, \mathrm{d}t \\

&=\left( \int_{-1}^{1} \! t^2f(t) \, \mathrm{d}t\right)-2\left( \int_{-1}^{1} \! tf(t) \, \mathrm{d}t \right) x+\left(\int_{-1}^{1} f(t) \, \mathrm{d}t \right) x^2.

\end{align*}

Then we have

\begin{align*}

T(1)&=\frac{2}{3} +2x^2 \\

T(x)&=-\frac{4}{x} x\\

T(x^2)&=\frac{2}{5}+\frac{2}{3}x^2

\end{align*}

Here we calculated the integrals

\[\int_{-1}^{1} \! 1 \, \mathrm{d}t= \left[t \right]_{-1}^1=2, \,\,\,\, \int_{-1}^{1} \!t \, \mathrm{d}t=\left[\frac{1}{2}t^2\right]_{-1}^1=0,\]
\[\int_{-1}^{1} \! t^2 \, \mathrm{d}t=\left[\frac{1}{3}t^3 \right]_{-1}^1=\frac{2}{3}, \,\,\,\, \int_{-1}^{1} \! t^3 \, \mathrm{d}t=\left[\frac{1}{4}t^4 \right]_{-1}^1=0, \,\,\,\, \int_{-1}^{1} \! t^4 \, \mathrm{d}t=\left[\frac{1}{5}t^5 \right]_{-1}^1=\frac{2}{5}.

\]
Therefore, the matrix for the linear transformation with respect to the basis $B=\{1,x,x^2\}$ is

\[\begin{bmatrix}

\frac{2}{3} & 0 & \frac{2}{5} \\[6pt]
0 &-\frac{4}{3} &0 \\[6pt]
2 & 0 & \frac{2}{3}

\end{bmatrix}.\]

### (c) $T(f(x))=e^x \frac{\mathrm{d}}{\mathrm{d}x}(e^{-x}f(x))$

Note that by the product rule for derivatives,

\begin{align*}

T(f(x))&=e^x \left(-e^{-x}f(x)+e^{-x}\frac{\mathrm{d}}{\mathrm{d}x} f(x) \right)\\

&=-f(x)+\frac{\mathrm{d}}{\mathrm{d}x} f(x).

\end{align*}

Thus we have

\begin{align*}

T(1)&=-1\\

T(x)&=-x+1\\

T(x^2)&=-x^2+2x.

\end{align*}

Hence the matrix for the linear transformation $T$ with respect to the basis $B$ is

\[\begin{bmatrix}

-1 & 1 & 0 \\

0 &-1 &2 \\

0 & 0 & -1

\end{bmatrix}.\]

## Comment.

This problem hints a connection between linear algebra and calculus, or differential equations.

And yes, they are closely related and differential equations can be solved using techniques of linear algebras.

Add to solve later

Sponsored Links