# nilpotent-matrix

by Yu ·

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

### More from my site

- Every Prime Ideal in a PID is Maximal / A Quotient of a PID by a Prime Ideal is a PID (a) Prove that every prime ideal of a Principal Ideal Domain (PID) is a maximal ideal. (b) Prove that a quotient ring of a PID by a prime ideal is a PID. Proof. (a) Prove that every PID is a maximal ideal. Let $R$ be a Principal Ideal Domain (PID) and let $P$ […]
- The Sum of Subspaces is a Subspace of a Vector Space Let $V$ be a vector space over a field $K$. If $W_1$ and $W_2$ are subspaces of $V$, then prove that the subset \[W_1+W_2:=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x}\in W_1, \mathbf{y}\in W_2\}\] is a subspace of the vector space $V$. Proof. We prove the […]
- Vector Space of Polynomials and a Basis of Its Subspace Let $P_2$ be the vector space of all polynomials of degree two or less. Consider the subset in $P_2$ \[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where \begin{align*} &p_1(x)=1, &p_2(x)=x^2+x+1, \\ &p_3(x)=2x^2, &p_4(x)=x^2-x+1. \end{align*} (a) Use the basis $B=\{1, x, […]
- Find All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular. Hint. Use the fact that a matrix is singular if and only […]
- Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$ Let $A$ be an $n\times n$ matrix. Its only eigenvalues are $1, 2, 3, 4, 5$, possibly with multiplicities. What is the nullity of the matrix $A+I_n$, where $I_n$ is the $n\times n$ identity matrix? (The Ohio State University, Linear Algebra Final Exam […]
- The Rank of the Sum of Two Matrices Let $A$ and $B$ be $m\times n$ matrices. Prove that \[\rk(A+B) \leq \rk(A)+\rk(B).\] Proof. Let \[A=[\mathbf{a}_1, \dots, \mathbf{a}_n] \text{ and } B=[\mathbf{b}_1, \dots, \mathbf{b}_n],\] where $\mathbf{a}_i$ and $\mathbf{b}_i$ are column vectors of $A$ and $B$, […]
- If Two Subsets $A, B$ of a Finite Group $G$ are Large Enough, then $G=AB$ Let $G$ be a finite group and let $A, B$ be subsets of $G$ satisfying \[|A|+|B| > |G|.\] Here $|X|$ denotes the cardinality (the number of elements) of the set $X$. Then prove that $G=AB$, where \[AB=\{ab \mid a\in A, b\in B\}.\] Proof. Since $A, B$ […]
- Idempotent Matrix and its Eigenvalues Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$. (a) Find a nonzero, nonidentity idempotent matrix. (b) Show that eigenvalues of an idempotent matrix $A$ is either $0$ or $1$. (The Ohio State University, Linear Algebra Final Exam […]