Nontrivial Action of a Simple Group on a Finite Set

Group Theory Problems and Solutions in Mathematics

Problem 112

Let $G$ be a simple group and let $X$ be a finite set.
Suppose $G$ acts nontrivially on $X$. That is, there exist $g\in G$ and $x \in X$ such that $g\cdot x \neq x$.
Then show that $G$ is a finite group and the order of $G$ divides $|X|!$.

LoadingAdd to solve later

Sponsored Links

Proof.

Since $G$ acts on $X$, it induces a permutation representation
\[\rho: G \to S_{X}.\]

Let $N=\ker(\rho)$ be the kernel of $\rho$.
Since a kernel is normal in $G$ and $G$ is simple, we have either $N=\{e\}$ or $N=G$.

If $N=G$, then for any $g\in G$ we have $\rho(g)$ is a trivial action, that is, $g\cdot x=x$ for any $X$.
This contradicts the assumption that $G$ acts nontrivially on $X$.
Hence we have $N=\{e\}$, and it follows that the homomorphism $\rho$ is injective.

Thus we have
\[G \cong \mathrm{im} (\rho) < S_{X}.\] Since $S_{X}$ is a finite group and $G$ is isomorphic to its subgroup, the group $G$ is finite.
By Lagrange’s theorem, the order $|G|=|\mathrm{im}(\rho)|$ of $G$ divides the order $|S_{X}|=|X|!$ of $S_{X}$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Subgroup of Finite Index Contains a Normal Subgroup of Finite IndexSubgroup of Finite Index Contains a Normal Subgroup of Finite Index Let $G$ be a group and let $H$ be a subgroup of finite index. Then show that there exists a normal subgroup $N$ of $G$ such that $N$ is of finite index in $G$ and $N\subset H$.   Proof. The group $G$ acts on the set of left cosets $G/H$ by left multiplication. Hence […]
  • A Subgroup of the Smallest Prime Divisor Index of a Group is NormalA Subgroup of the Smallest Prime Divisor Index of a Group is Normal Let $G$ be a finite group of order $n$ and suppose that $p$ is the smallest prime number dividing $n$. Then prove that any subgroup of index $p$ is a normal subgroup of $G$.   Hint. Consider the action of the group $G$ on the left cosets $G/H$ by left […]
  • Every Group of Order 24 Has a Normal Subgroup of Order 4 or 8Every Group of Order 24 Has a Normal Subgroup of Order 4 or 8 Prove that every group of order $24$ has a normal subgroup of order $4$ or $8$.   Proof. Let $G$ be a group of order $24$. Note that $24=2^3\cdot 3$. Let $P$ be a Sylow $2$-subgroup of $G$. Then $|P|=8$. Consider the action of the group $G$ on […]
  • Surjective Group Homomorphism to $\Z$ and Direct Product of Abelian GroupsSurjective Group Homomorphism to $\Z$ and Direct Product of Abelian Groups Let $G$ be an abelian group and let $f: G\to \Z$ be a surjective group homomorphism. Prove that we have an isomorphism of groups: \[G \cong \ker(f)\times \Z.\]   Proof. Since $f:G\to \Z$ is surjective, there exists an element $a\in G$ such […]
  • A Group Homomorphism is Injective if and only if the Kernel is TrivialA Group Homomorphism is Injective if and only if the Kernel is Trivial Let $G$ and $H$ be groups and let $f:G \to K$ be a group homomorphism. Prove that the homomorphism $f$ is injective if and only if the kernel is trivial, that is, $\ker(f)=\{e\}$, where $e$ is the identity element of $G$.     Definitions/Hint. We recall several […]
  • A Group Homomorphism is Injective if and only if MonicA Group Homomorphism is Injective if and only if Monic Let $f:G\to G'$ be a group homomorphism. We say that $f$ is monic whenever we have $fg_1=fg_2$, where $g_1:K\to G$ and $g_2:K \to G$ are group homomorphisms for some group $K$, we have $g_1=g_2$. Then prove that a group homomorphism $f: G \to G'$ is injective if and only if it is […]
  • Group Homomorphism, Preimage, and Product of GroupsGroup Homomorphism, Preimage, and Product of Groups Let $G, G'$ be groups and let $f:G \to G'$ be a group homomorphism. Put $N=\ker(f)$. Then show that we have \[f^{-1}(f(H))=HN.\]   Proof. $(\subset)$ Take an arbitrary element $g\in f^{-1}(f(H))$. Then we have $f(g)\in f(H)$. It follows that there exists $h\in H$ […]
  • Any Finite Group Has a Composition SeriesAny Finite Group Has a Composition Series Let $G$ be a finite group. Then show that $G$ has a composition series.   Proof. We prove the statement by induction on the order $|G|=n$ of the finite group. When $n=1$, this is trivial. Suppose that any finite group of order less than $n$ has a composition […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Conjugate of the Centralizer of a Set is the Centralizer of the Conjugate of the Set

Let $X$ be a subset of a group $G$. Let $C_G(X)$ be the centralizer subgroup of $X$ in $G$. For...

Close