Null Space, Nullity, Range, Rank of a Projection Linear Transformation

Ohio State University exam problems and solutions in mathematics

Problem 450

Let $\mathbf{u}=\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}$ and $T:\R^3 \to \R^3$ be the linear transformation
\[T(\mathbf{x})=\proj_{\mathbf{u}}\mathbf{x}=\left(\, \frac{\mathbf{u}\cdot \mathbf{x}}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}.\]

(a) Calculate the null space $\calN(T)$, a basis for $\calN(T)$ and nullity of $T$.

(b) Only by using part (a) and no other calculations, find $\det(A)$, where $A$ is the matrix representation of $T$ with respect to the standard basis of $\R^3$.

(c) Calculate the range $\calR(T)$, a basis for $\calR(T)$ and the rank of $T$.

(d) Calculate the matrix $A$ representing $T$ with respect to the standard basis for $\R^3$.

(e) Let
\[B=\left\{\, \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \,\right\}\] be a basis for $\R^3$.
Calculate the coordinates of $\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}$ with respect to $B$.

(The Ohio State University, Linear Algebra Exam Problem)

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Calculate the null space $\calN(T)$, a basis for $\calN(T)$ and nullity of $T$.

Let $\mathbf{x}=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}\in \R^3$ and suppose that we have $\mathbf{x}\in \calN(T)$.
This means that $T(\mathbf{x})=\mathbf{0}$.
Thus we have
\[\left(\, \frac{\mathbf{u}\cdot \mathbf{x}}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}=0.\] Since $\mathbf{u}\neq \mathbf{0}$, we must have
\begin{align*}
0=\mathbf{u}\cdot \mathbf{x}=\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}\cdot \begin{bmatrix}
x \\
y \\
z
\end{bmatrix}=x+y.
\end{align*}
This yields that the null space $\calN(T)$ consists of the vectors of the form
\[\mathbf{x}=\begin{bmatrix}
x \\
-x \\
z
\end{bmatrix}=x\begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}+z\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \tag{*}\] for any real numbers $x, z$.
Thus, we have
\[\calN(T)=\Span\left\{\, \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \,\right\}.\]

It follows from (*) that the vectors $\begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}$ are linearly independent, hence they form a basis of $\calN(T)$.
The nullity of $T$ is the dimension of $\calN(T)$ by definition, and hence the nullity of $T$ is $2$.

 

(b) Find the determinant $\det(A)$

Note that the nullity of $A$ is the same as the nullity of $T$. So by part (a), the nullity of $A$ is $2$. This implies that the equation
\[A\mathbf{x}=\mathbf{0}\] has a nonzero solution $\mathbf{x}$.
Hence the matrix $A$ is singular, and thus the determinant $\det(A)=0$.

 

(c) Calculate the range $\calR(T)$, a basis for $\calR(T)$ and the rank of $T$.

Note that by the formula of the linear transformation $T:\R^3\to \R^3$, every vector $\mathbf{x}\in \R^3$ is mapped to a scalar multiple of the vector $\mathbf{u}$.
Also, since $\mathbf{u}$ is mapped to $\mathbf{u}$ itself, the linear transformation $T$ is nonzero.
Hence the range is
\[\calR(T)=\Span(\mathbf{u}),\] and a basis for $\calR(T)$ is the set $\{\mathbf{u}\}$.
The rank of $T$ is the dimension of the range $\calR(T)$ by definition.
Thus, the rank of $T$ is $1$.

 

(d) Calculate the matrix $A$ representing $T$ with respect to the standard basis for $\R^3$.

Let
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, \mathbf{e}_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}\] be the standard basis vectors of $\R^3$.

We calculate
\begin{align*}
T(\mathbf{e}_1)&=\left(\, \frac{\mathbf{u}\cdot \mathbf{e}_1}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}
=\frac{1}{2}\mathbf{u}=\begin{bmatrix}
1/2 \\
1/2 \\
0
\end{bmatrix}\\[6pt] T(\mathbf{e}_2)&=\left(\, \frac{\mathbf{u}\cdot \mathbf{e}_2}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}
=\frac{1}{2}\mathbf{u}=\begin{bmatrix}
1/2 \\
1/2 \\
0
\end{bmatrix}\\[6pt] T(\mathbf{e}_3)&=\left(\, \frac{\mathbf{u}\cdot \mathbf{e}_3}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}
=\frac{0}{2}\mathbf{u}=\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.
\end{align*}
Thus, the matrix representation $A$ of $T$ is
\begin{align*}
A&=\begin{bmatrix}
T(\mathbf{e}_1) & T(\mathbf{e}_2) & T(\mathbf{e}_3) \\
\end{bmatrix}\\
&=\begin{bmatrix}
1/2 & 1/2 & 0 \\
1/2 &1/2 &0 \\
0 & 0 & 0
\end{bmatrix}.
\end{align*}

 

(e) Calculate the coordinate vector

Let $\mathbf{v}=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}$ and let
\[ [\mathbf{v}]_B=\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}\] be the coordinate vector of $\mathbf{v}$ with respect to the basis $B$.
This means that we have
\begin{align*}
\mathbf{v}=a \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}+b \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}+c\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix}.
\end{align*}
To determine $a, b, c$, we solve the system
\begin{align*}
\begin{bmatrix}
1 & -1 & 0 \\
0 &1 &-1 \\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}=\mathbf{v}.
\end{align*}
The augmented matrix of the system is
\begin{align*}
\left[\begin{array}{rrr|r}
1 & -1 & 0 & x \\
0 &1 & -1 & y \\
0 & 0 & 1 & z
\end{array} \right].
\end{align*}

Applying the elementary row operations, we obtain
\begin{align*}
\left[\begin{array}{rrr|r}
1 & -1 & 0 & x \\
0 &1 & -1 & y \\
0 & 0 & 1 & z
\end{array} \right] \xrightarrow{R_1+R_2}
\left[\begin{array}{rrr|r}
1 & 0 & -1 & x+y \\
0 &1 & -1 & y \\
0 & 0 & 1 & z
\end{array} \right]\\[6pt] \xrightarrow{\substack{R_1+R_3\\ R_2+R_3}}
\left[\begin{array}{rrr|r}
1 & 0 & 0 & x+y+x \\
0 &1 & 0 & y+z \\
0 & 0 & 1 & z
\end{array} \right].
\end{align*}
Hence we have
\begin{align*}
a=x+y+z, b=y+z, c=z,
\end{align*}
and the coordinate vector of $\mathbf{v}$ with respect to the basis $B$ is
\[[\mathbf{v}]_B=\begin{bmatrix}
x+y+z \\
y+z \\
z
\end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra Problems and Solutions
If $A^{\trans}A=A$, then $A$ is a Symmetric Idempotent Matrix

Let $A$ be a square matrix such that \[A^{\trans}A=A,\] where $A^{\trans}$ is the transpose matrix of $A$. Prove that $A$...

Close