Let $a$ and $b$ be two distinct positive real numbers. Define matrices
\[A:=\begin{bmatrix}
0 & a\\
a & 0
\end{bmatrix}, \,\,
B:=\begin{bmatrix}
0 & b\\
b& 0
\end{bmatrix}.\]

Find all the pairs $(\lambda, X)$, where $\lambda$ is a real number and $X$ is a non-zero real matrix satisfying the relation
\[AX+XB=\lambda X. \tag{*} \]

Let $A$ be a $4\times 4$ real symmetric matrix. Suppose that $\mathbf{v}_1=\begin{bmatrix}
-1 \\
2 \\
0 \\
-1
\end{bmatrix}$ is an eigenvector corresponding to the eigenvalue $1$ of $A$.
Suppose that the eigenspace for the eigenvalue $2$ is $3$-dimensional.

(a) Find an orthonormal basis for the eigenspace of the eigenvalue $2$ of $A$.

Find a basis for the subspace $W$ of all vectors in $\R^4$ which are perpendicular to the columns of the matrix
\[A=\begin{bmatrix}
11 & 12 & 13 & 14 \\
21 &22 & 23 & 24 \\
31 & 32 & 33 & 34 \\
41 & 42 & 43 & 44
\end{bmatrix}.\]

Let $A$ be an $m \times n$ real matrix.
Then the kernel of $A$ is defined as $\ker(A)=\{ x\in \R^n \mid Ax=0 \}$.

The kernel is also called the null space of $A$.
Suppose that $A$ is an $m \times n$ real matrix such that $\ker(A)=0$. Prove that $A^{\trans}A$ is invertible.

Suppose that $A$ is a diagonalizable $n\times n$ matrix and has only $1$ and $-1$ as eigenvalues.
Show that $A^2=I_n$, where $I_n$ is the $n\times n$ identity matrix.

Let $A$ be an $n$ by $n$ matrix with entries in complex numbers $\C$. Its only eigenvalues are $1,2,3,4,5$, possibly with multiplicities. What is the rank of the matrix $A+I_n$, where $I_n$ is the identity $n$ by $n$ matrix.

\[A=\begin{bmatrix}
a_{11} & a_{12}\\
a_{21}& a_{22}
\end{bmatrix}\]
be a matrix such that $a_{11}+a_{12}=1$ and $a_{21}+a_{22}=1$. Namely, the sum of the entries in each row is $1$.

(Such a matrix is called (right) stochastic matrix (also termed probability matrix, transition matrix, substitution matrix, or Markov matrix).)

Then prove that the matrix $A$ has an eigenvalue $1$.

(b) Find all the eigenvalues of the matrix
\[B=\begin{bmatrix}
0.3 & 0.7\\
0.6& 0.4
\end{bmatrix}.\]

(c) For each eigenvalue of $B$, find the corresponding eigenvectors.

Suppose that $S$ is a fixed invertible $3$ by $3$ matrix. This question is about all the matrices $A$ that are diagonalized by $S$, so that $S^{-1}AS$ is diagonal. Show that these matrices $A$ form a subspace of $3$ by $3$ matrix space.

A complex matrix is called unitary if $\overline{A}^{\trans} A=I$.

The inner product $(\mathbf{x}, \mathbf{y})$ of complex vector $\mathbf{x}$, $\mathbf{y}$ is defined by $(\mathbf{x}, \mathbf{y}):=\overline{\mathbf{x}}^{\trans} \mathbf{y}$. The length of a complex vector $\mathbf{x}$ is defined to be $||\mathbf{x}||:=\sqrt{(\mathbf{x}, \mathbf{x})}$.

Let $A$ be an $n \times n$ complex matrix. Prove that the followings are equivalent.

(a) The matrix $A$ is unitary.

(b) $||A \mathbf{x}||=|| \mathbf{x}||$ for any $n$-dimensional complex vector $\mathbf{x}$.

(c) $(A\mathbf{x}, A\mathbf{y})=(\mathbf{x}, \mathbf{y})$ for any $n$-dimensional complex vectors $x, y$

Solve the following system of linear equations using Gauss-Jordan elimination.
\begin{align*}
6x+8y+6z+3w &=-3 \\
6x-8y+6z-3w &=3\\
8y \,\,\,\,\,\,\,\,\,\,\,- 6w &=6
\end{align*}