## Problem 46

Let $A$ be an $n\times n$ matrix such that $A^k=I_n$, where $k\in \N$ and $I_n$ is the $n \times n$ identity matrix.

Show that the trace of $(A^{-1})^{\trans}$ is the conjugate of the trace of $A$. That is, show that $\tr((A^{-1})^{\trans})=\overline{\tr(A)}$.

## Problem 45

Calculate the determinants of the following $n\times n$ matrices.
$A=\begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 &1 \\ 1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \dots & \ddots & \vdots \\ 0 & 0 & 0 &\dots & 1 & 1 & 0\\ 0 & 0 & 0 &\dots & 0 & 1 & 1 \end{bmatrix}$

The entries of $A$ is $1$ at the diagonal entries, entries below the diagonal, and $(1, n)$-entry.
The other entries are zero.
$B=\begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 & -1 \\ -1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \dots & \ddots & \vdots \\ 0 & 0 & 0 &\dots & -1 & 1 & 0\\ 0 & 0 & 0 &\dots & 0 & -1 & 1 \end{bmatrix}.$

The entries of $B$ is $1$ at the diagonal entries.
The entries below the diagonal and $(1,n)$-entry are $-1$.
The other entries are zero.

## Problem 44

Suppose that a real matrix $A$ maps each of the following vectors
$\mathbf{x}_1=\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_2=\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_3=\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ into the vectors
$\mathbf{y}_1=\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \mathbf{y}_2=\begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}, \mathbf{y}_3=\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix},$ respectively.
That is, $A\mathbf{x}_i=\mathbf{y}_i$ for $i=1,2,3$.
Find the matrix $A$.

(Kyoto University Exam)

## Problem 43

Let $a$ and $b$ be two distinct positive real numbers. Define matrices
$A:=\begin{bmatrix} 0 & a\\ a & 0 \end{bmatrix}, \,\, B:=\begin{bmatrix} 0 & b\\ b& 0 \end{bmatrix}.$

Find all the pairs $(\lambda, X)$, where $\lambda$ is a real number and $X$ is a non-zero real matrix satisfying the relation
$AX+XB=\lambda X. \tag{*}$

(The University of Tokyo Linear Algebra Exam)

## Problem 42

Let $A$ be a $4\times 4$ real symmetric matrix. Suppose that $\mathbf{v}_1=\begin{bmatrix} -1 \\ 2 \\ 0 \\ -1 \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue $1$ of $A$.
Suppose that the eigenspace for the eigenvalue $2$ is $3$-dimensional.

(a) Find an orthonormal basis for the eigenspace of the eigenvalue $2$ of $A$.

(b) Find $A\mathbf{v}$, where
$\mathbf{v}=\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$

(The University of Tokyo Linear Algebra Exam)

## Problem 41

Find $A^{10}$, where $A=\begin{bmatrix} 4 & 3 & 0 & 0 \\ 3 &-4 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.

(Harvard University Exam)

## Problem 40

Find a basis for the subspace $W$ of all vectors in $\R^4$ which are perpendicular to the columns of the matrix
$A=\begin{bmatrix} 11 & 12 & 13 & 14 \\ 21 &22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \end{bmatrix}.$

(Harvard University Exam)

## Problem 39

Suppose that $A$ is a diagonalizable matrix with characteristic polynomial
$f_A(\lambda)=\lambda^2(\lambda-3)(\lambda+2)^3(\lambda-4)^3.$

(a) Find the size of the matrix $A$.

(b) Find the dimension of $E_4$, the eigenspace corresponding to the eigenvalue $\lambda=4$.

(c) Find the dimension of the kernel(nullspace) of $A$.

(Stanford University Linear Algebra Exam)

## Problem 38

Let $A$ be an $m \times n$ real matrix.
Then the kernel of $A$ is defined as $\ker(A)=\{ x\in \R^n \mid Ax=0 \}$.

The kernel is also called the null space of $A$.
Suppose that $A$ is an $m \times n$ real matrix such that $\ker(A)=0$. Prove that $A^{\trans}A$ is invertible.

(Stanford University Linear Algebra Exam)

## Problem 37

Suppose that $A$ is a diagonalizable $n\times n$ matrix and has only $1$ and $-1$ as eigenvalues.
Show that $A^2=I_n$, where $I_n$ is the $n\times n$ identity matrix.

(Stanford University Linear Algebra Exam)

See below for a generalized problem.

## Problem 36

If $L:\R^2 \to \R^3$ is a linear transformation such that
\begin{align*}
L\left( \begin{bmatrix}
1 \\
0
\end{bmatrix}\right)
=\begin{bmatrix}
1 \\
1 \\
2
\end{bmatrix}, \,\,\,\,
L\left( \begin{bmatrix}
1 \\
1
\end{bmatrix}\right)
=\begin{bmatrix}
2 \\
3 \\
2
\end{bmatrix}.
\end{align*}
then

(a) find $L\left( \begin{bmatrix} 1 \\ 2 \end{bmatrix}\right)$, and

(b) find the formula for $L\left( \begin{bmatrix} x \\ y \end{bmatrix}\right)$.

If you think you can solve (b), then skip (a) and solve (b) first and use the result of (b) to answer (a).

(Part (a) is an exam problem of Purdue University)

## Problem 35

Let $A$ be an $n$ by $n$ matrix with entries in complex numbers $\C$. Its only eigenvalues are $1,2,3,4,5$, possibly with multiplicities. What is the rank of the matrix $A+I_n$, where $I_n$ is the identity $n$ by $n$ matrix.

(UCB-University of California, Berkeley, Exam)

## Problem 34

(a) Let

$A=\begin{bmatrix} a_{11} & a_{12}\\ a_{21}& a_{22} \end{bmatrix}$ be a matrix such that $a_{11}+a_{12}=1$ and $a_{21}+a_{22}=1$. Namely, the sum of the entries in each row is $1$.

(Such a matrix is called (right) stochastic matrix (also termed probability matrix, transition matrix, substitution matrix, or Markov matrix).)

Then prove that the matrix $A$ has an eigenvalue $1$.

(b) Find all the eigenvalues of the matrix
$B=\begin{bmatrix} 0.3 & 0.7\\ 0.6& 0.4 \end{bmatrix}.$

(c) For each eigenvalue of $B$, find the corresponding eigenvectors.

## Problem 33

Suppose that $S$ is a fixed invertible $3$ by $3$ matrix. This question is about all the matrices $A$ that are diagonalized by $S$, so that $S^{-1}AS$ is diagonal. Show that these matrices $A$ form a subspace of $3$ by $3$ matrix space.

(MIT-Massachusetts Institute of Technology Exam)

## Problem 32

Let
$A=\begin{bmatrix} 2 & 0 & 10 \\ 0 &7+x &-3 \\ 0 & 4 & x \end{bmatrix}.$ Find all values of $x$ such that $A$ is invertible.

(Stanford University Linear Algebra Exam)

## Problem 31

Show that the center $Z(S_n)$ of the symmetric group with $n \geq 3$ is trivial.

## Problem 30

Let $G$ be a group of order $|G|=pq$, where $p$ and $q$ are (not necessarily distinct) prime numbers.

Then show that $G$ is either abelian group or the center $Z(G)=1$.

## Problem 29

A complex matrix is called unitary if $\overline{A}^{\trans} A=I$.

The inner product $(\mathbf{x}, \mathbf{y})$ of complex vector $\mathbf{x}$, $\mathbf{y}$ is defined by $(\mathbf{x}, \mathbf{y}):=\overline{\mathbf{x}}^{\trans} \mathbf{y}$. The length of a complex vector $\mathbf{x}$ is defined to be $||\mathbf{x}||:=\sqrt{(\mathbf{x}, \mathbf{x})}$.

Let $A$ be an $n \times n$ complex matrix. Prove that the followings are equivalent.

(a) The matrix $A$ is unitary.

(b) $||A \mathbf{x}||=|| \mathbf{x}||$ for any $n$-dimensional complex vector $\mathbf{x}$.

(c) $(A\mathbf{x}, A\mathbf{y})=(\mathbf{x}, \mathbf{y})$ for any $n$-dimensional complex vectors $x, y$

## Problem 28

Let $A$ be an $n\times n$ matrix and suppose that $A^r=I_n$ for some positive integer $r$. Then show that

(a) $|\tr(A)|\leq n$.

(b) If $|\tr(A)|=n$, then $A=\zeta I_n$ for an $r$-th root of unity $\zeta$.

(c) $\tr(A)=n$ if and only if $A=I_n$.

## Problem 27

Solve the following system of linear equations using Gauss-Jordan elimination.
\begin{align*}
6x+8y+6z+3w &=-3 \\
6x-8y+6z-3w &=3\\
8y \,\,\,\,\,\,\,\,\,\,\,- 6w &=6
\end{align*}