## Problem 532

Let $R$ and $S$ be rings. Suppose that $f: R \to S$ is a surjective ring homomorphism.

Prove that every image of an ideal of $R$ under $f$ is an ideal of $S$.
Namely, prove that if $I$ is an ideal of $R$, then $J=f(I)$ is an ideal of $S$.

## Problem 531

(a) Let $F$ be a field. Show that $F$ does not have a nonzero zero divisor.

(b) Let $R$ and $S$ be nonzero rings with identities.
Prove that the direct product $R\times S$ cannot be a field.

## Problem 530

Let $R$ be a commutative ring with identity $1\neq 0$. Suppose that for each element $a\in R$, there exists an integer $n > 1$ depending on $a$.

Then prove that every prime ideal is a maximal ideal.

## Problem 529

Let $\F_3=\Zmod{3}$ be the finite field of order $3$.
Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal $I=(x^2+1)$ generated by $x^2+1\in \F_3[x]$.

(a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field. How many elements does the field have?

(b) Let $ax+b+I$ be a nonzero element of the field $\F_3[x]/(x^2+1)$, where $a, b \in \F_3$. Find the inverse of $ax+b+I$.

(c) Recall that the multiplicative group of nonzero elements of a field is a cyclic group.

Confirm that the element $x$ is not a generator of $E^{\times}$, where $E=\F_3[x]/(x^2+1)$ but $x+1$ is a generator.

## Problem 528

Let $V$ denote the vector space of all real $2\times 2$ matrices.
Suppose that the linear transformation from $V$ to $V$ is given as below.
$T(A)=\begin{bmatrix} 2 & 3\\ 5 & 7 \end{bmatrix}A-A\begin{bmatrix} 2 & 3\\ 5 & 7 \end{bmatrix}.$ Prove or disprove that the linear transformation $T:V\to V$ is an isomorphism.

## Problem 527

A square matrix $A$ is called idempotent if $A^2=A$.

(a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$.
Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$.

Prove that $P$ is an idempotent matrix.

(b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be unit vectors in $\R^n$ such that $\mathbf{u}$ and $\mathbf{v}$ are orthogonal.
Let $Q=\mathbf{u}\mathbf{u}^{\trans}+\mathbf{v}\mathbf{v}^{\trans}$.

Prove that $Q$ is an idempotent matrix.

(c) Prove that each nonzero vector of the form $a\mathbf{u}+b\mathbf{v}$ for some $a, b\in \R$ is an eigenvector corresponding to the eigenvalue $1$ for the matrix $Q$ in part (b).

## Problem 526

A ring is called local if it has a unique maximal ideal.

(a) Prove that a ring $R$ with $1$ is local if and only if the set of non-unit elements of $R$ is an ideal of $R$.

(b) Let $R$ be a ring with $1$ and suppose that $M$ is a maximal ideal of $R$.
Prove that if every element of $1+M$ is a unit, then $R$ is a local ring.

## Problem 525

Let
$R=\left\{\, \begin{bmatrix} a & b\\ 0& a \end{bmatrix} \quad \middle | \quad a, b\in \Q \,\right\}.$ Then the usual matrix addition and multiplication make $R$ an ring.

Let
$J=\left\{\, \begin{bmatrix} 0 & b\\ 0& 0 \end{bmatrix} \quad \middle | \quad b \in \Q \,\right\}$ be a subset of the ring $R$.

(a) Prove that the subset $J$ is an ideal of the ring $R$.

(b) Prove that the quotient ring $R/J$ is isomorphic to $\Q$.

## Problem 524

Let $R$ be the ring of all $2\times 2$ matrices with integer coefficients:
$R=\left\{\, \begin{bmatrix} a & b\\ c& d \end{bmatrix} \quad \middle| \quad a, b, c, d\in \Z \,\right\}.$

Let $S$ be the subset of $R$ given by
$S=\left\{\, \begin{bmatrix} s & 0\\ 0& s \end{bmatrix} \quad \middle | \quad s\in \Z \,\right\}.$

(a) True or False: $S$ is a subring of $R$.

(b) True or False: $S$ is an ideal of $R$.

## Problem 523

Let $G$ be a nilpotent group and let $H$ be a proper subgroup of $G$.

Then prove that $H \subsetneq N_G(H)$, where $N_G(H)$ is the normalizer of $H$ in $G$.

## Problem 522

Let $G$ be an abelian group and let $H$ be the subset of $G$ consisting of all elements of $G$ of finite order. That is,
$H=\{ a\in G \mid \text{the order of a is finite}\}.$

Prove that $H$ is a subgroup of $G$.

## Problem 521

Decipher the trick of the following mathematical magic.

## Problem 520

Give an example of a commutative ring $R$ and a prime ideal $I$ of $R$ that is not a maximal ideal of $R$.

## Problem 519

Prove that the quadratic integer ring $\Z[\sqrt{5}]$ is not a Unique Factorization Domain (UFD).

## Problem 518

Prove that the quadratic integer ring $\Z[\sqrt{-5}]$ is not a Unique Factorization Domain (UFD).

## Problem 517

Let $R$ be a commutative ring. Consider the polynomial ring $R[x,y]$ in two variables $x, y$.
Let $(x)$ be the principal ideal of $R[x,y]$ generated by $x$.

Prove that $R[x, y]/(x)$ is isomorphic to $R[y]$ as a ring.

## Problem 516

Prove the following statements.

(a) If $a\neq 1$ is an idempotent element of $R$, then $a$ is a zero divisor.

(b) Suppose that $R$ is an integral domain. Determine all the idempotent elements of $R$.

## Top 10 Popular Math Problems in 2016-2017

It’s been a year since I started this math blog!!

More than 500 problems were posted during a year (July 19th 2016-July 19th 2017).

I made a list of the 10 math problems on this blog that have the most views.

Can you solve all of them?

The level of difficulty among the top 10 problems.
【★★★】 Difficult (Final Exam Level)
【★★☆】 Standard(Midterm Exam Level)
【★☆☆】 Easy (Homework Level)

Read solution

## Problem 514

Prove that a positive definite matrix has a unique positive definite square root.

## Problem 513

Let $A$ be a square matrix. A matrix $B$ satisfying $B^2=A$ is call a square root of $A$.

Find all the square roots of the matrix
$A=\begin{bmatrix} 2 & 2\\ 2& 2 \end{bmatrix}.$