## No/Infinitely Many Square Roots of 2 by 2 Matrices

## Problem 512

**(a)** Prove that the matrix $A=\begin{bmatrix}

0 & 1\\

0& 0

\end{bmatrix}$ does not have a square root.

Namely, show that there is no complex matrix $B$ such that $B^2=A$.

**(b)** Prove that the $2\times 2$ identity matrix $I$ has infinitely many distinct square root matrices.