ring-theory-eye-catch

LoadingAdd to solve later

Sponsored Links

Problems and solutions of ring theory in abstract algebra


LoadingAdd to solve later

Sponsored Links

More from my site

  • Isomorphism of the Endomorphism and the Tensor Product of a Vector SpaceIsomorphism of the Endomorphism and the Tensor Product of a Vector Space Let $V$ be a finite dimensional vector space over a field $K$ and let $\End (V)$ be the vector space of linear transformations from $V$ to $V$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for $V$. Show that the map $\phi:\End (V) \to V^{\oplus n}$ defined by […]
  • A Rational Root of a Monic Polynomial with Integer Coefficients is an IntegerA Rational Root of a Monic Polynomial with Integer Coefficients is an Integer Suppose that $\alpha$ is a rational root of a monic polynomial $f(x)$ in $\Z[x]$. Prove that $\alpha$ is an integer.   Proof. Suppose that $\alpha=\frac{p}{q}$ is a rational number in lowest terms, that is, $p$ and $q$ are relatively prime […]
  • Symmetric Matrix and Its Eigenvalues, Eigenspaces, and EigenspacesSymmetric Matrix and Its Eigenvalues, Eigenspaces, and Eigenspaces Let $A$ be a $4\times 4$ real symmetric matrix. Suppose that $\mathbf{v}_1=\begin{bmatrix} -1 \\ 2 \\ 0 \\ -1 \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue $1$ of $A$. Suppose that the eigenspace for the eigenvalue $2$ is $3$-dimensional. (a) Find an […]
  • Basis of Span in Vector Space of Polynomials of Degree 2 or LessBasis of Span in Vector Space of Polynomials of Degree 2 or Less Let $P_2$ be the vector space of all polynomials of degree $2$ or less with real coefficients. Let \[S=\{1+x+2x^2, \quad x+2x^2, \quad -1, \quad x^2\}\] be the set of four vectors in $P_2$. Then find a basis of the subspace $\Span(S)$ among the vectors in $S$. (Linear […]
  • Differentiating Linear Transformation is NilpotentDifferentiating Linear Transformation is Nilpotent Let $P_n$ be the vector space of all polynomials with real coefficients of degree $n$ or less. Consider the differentiation linear transformation $T: P_n\to P_n$ defined by \[T\left(\, f(x) \,\right)=\frac{d}{dx}f(x).\] (a) Consider the case $n=2$. Let $B=\{1, x, x^2\}$ be a […]
  • Normal Subgroups, Isomorphic Quotients, But Not IsomorphicNormal Subgroups, Isomorphic Quotients, But Not Isomorphic Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$. Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.   Proof. We give a […]
  • Quiz: Linear Equations and Matrix EntreisQuiz: Linear Equations and Matrix Entreis Do the following quiz about Linear Equations Matrix entries.   There are two questions. After completing the quiz, click View questions to see the solutions.
  • Ring of Gaussian Integers and Determine its Unit ElementsRing of Gaussian Integers and Determine its Unit Elements Denote by $i$ the square root of $-1$. Let \[R=\Z[i]=\{a+ib \mid a, b \in \Z \}\] be the ring of Gaussian integers. We define the norm $N:\Z[i] \to \Z$ by sending $\alpha=a+ib$ to \[N(\alpha)=\alpha \bar{\alpha}=a^2+b^2.\] Here $\bar{\alpha}$ is the complex conjugate of […]

Leave a Reply

Your email address will not be published. Required fields are marked *