Prove that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse Elements

Field theory problems and solution in abstract algebra

Problem 529

Let $\F_3=\Zmod{3}$ be the finite field of order $3$.
Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal $I=(x^2+1)$ generated by $x^2+1\in \F_3[x]$.

(a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field. How many elements does the field have?

(b) Let $ax+b+I$ be a nonzero element of the field $\F_3[x]/(x^2+1)$, where $a, b \in \F_3$. Find the inverse of $ax+b+I$.

(c) Recall that the multiplicative group of nonzero elements of a field is a cyclic group.

Confirm that the element $x$ is not a generator of $E^{\times}$, where $E=\F_3[x]/(x^2+1)$ but $x+1$ is a generator.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field

Let $f(x)=x^2+1$. We claim that the polynomial $f(x)$ is irreducible over $\F_3$.
To see this, note that $f(x)$ is a quadratic polynomial.
So $f(x)$ is irreducible over $\F_3$ if it does not have a root in $\F_3$.
We have
\begin{align*}
f(0)=1, \quad f(1)=2, \quad f(2)=2^2+1=2 \text{ in } \F_3.
\end{align*}
Hence $f(x)$ does not have a root in $\F_3$ and it is irreducible over $\F_3$.


It follows that the quotient $\F_3[x]/(x^2+1)$ is a field.
Since $x^2+1$ is quadratic, the extension degree of $\F_3[x]/(x^2+1)$ over $\F_3$ is $2$.
Hence the number of elements in the field is $3^2=9$.

(b) Find the inverse of $ax+b+I$

Let $ax+b$ be a representative of a nonzero element of the field $\F_3[x]/(x^2+1)$.
Let $cx+d$ be its inverse. Then we have
\begin{align*}
1&=(ax+b)(cx+d)=acx^2+(ad+bc)x+bd\\
&=(ad+bc)x+bd-ac
\end{align*}
since $x^2=-1$ in $\F_3[x]/(x^2+1)$.

Hence we obtain two equations
\begin{align*}
ad+bc=0 \text{ and } bd-ac=1.
\end{align*}


Since $ax+b$ is a nonzero element, at least one of $a, b$ is not zero.
If $a\neq 0$, then the first equation gives
\[d=-\frac{bc}{a}. \tag{*}\] Substituting this to the second equation, we obtain
\begin{align*}
\left(\, \frac{-b^2-a^2}{a} \,\right)c=1.
\end{align*}
Observe that $a^2+b^2$ is not zero in $\F_3$.
(Since $a \neq 0$, we have $a^2=1$. Also $b^2=0, 1$.)
Hence we have
\begin{align*}
c=-\frac{a}{a^2+b^2}.
\end{align*}

It follows from (*) that
\[d=\frac{b}{a^2+b^2}\]

Thus, if $a \neq 0$, then the inverse element is
\[(ax+b)^{-1}=\frac{1}{a^2+b^2}(-ax+b). \tag{**}\]


If $a=0$, then $b\neq 0$ and it is clear that the inverse element of $ax+b=b$ is $1/b$.
Note that the formula (**) is still true in this case.


In summary, we have

\[(ax+b)^{-1}=\frac{1}{a^2+b^2}(-ax+b)\]

for any nonzero element $ax+b$ in the field $\F_3[x]/(x^2+1)$.

(c) $x$ is not a generator but $x+1$ is a generator

Note that the order of $E^{\times}$ is $8$ since $E$ is a finite field of order $9$ by part (a).
We compute the powers of $x$ and obtain
\begin{align*}
x, \quad x^2=-1, \quad x^3=-x, \quad x^4=-x^2=1.
\end{align*}
Thus, the order of the element $x$ is $4$, hence $x$ is not a generator of the cyclic group $E^{\times}$.


Next, let us check that $x+1$ is a generator.
We compute the powers of $x+1$ as follows.
\begin{align*}
&x+1, \quad (x+1)^2=x^2+2x+1=2x, \\
&(x+1)^3=2x(x+1)=2x^2+2x=2x-2=2x+1\\
&(x+1)^4=(2x+1)(x+1)=2x^2+3x+1=2.
\end{align*}

Observe that at this post the order of $x+1$ must be larger than $4$.
Since the order of $E^{\times}$ is $8$, the order of $x+1$ must be $8$ by Lagrange’s theorem.


Just for a reference we give the complete list of powers of $x+1$.
\[\begin{array}{ |c|c|}
\hline
n & (x+1)^n \\
\hline
1 & x+1 \\
2 & 2x \\
3 & 2x+1 \\
4 & 2 \\
5 & 2x+2\\
6 & x\\
7 &x+2\\
8 & 1\\
\hline
\end{array}\]


LoadingAdd to solve later

Sponsored Links

More from my site

  • Galois Extension $\Q(\sqrt{2+\sqrt{2}})$ of Degree 4 with Cyclic GroupGalois Extension $\Q(\sqrt{2+\sqrt{2}})$ of Degree 4 with Cyclic Group Show that $\Q(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, that is, it is a Galois extension of degree $4$ with cyclic Galois group.   Proof. Put $\alpha=\sqrt{2+\sqrt{2}}$. Then we have $\alpha^2=2+\sqrt{2}$. Taking square of $\alpha^2-2=\sqrt{2}$, we obtain […]
  • Application of Field Extension to Linear CombinationApplication of Field Extension to Linear Combination Consider the cubic polynomial $f(x)=x^3-x+1$ in $\Q[x]$. Let $\alpha$ be any real root of $f(x)$. Then prove that $\sqrt{2}$ can not be written as a linear combination of $1, \alpha, \alpha^2$ with coefficients in $\Q$.   Proof. We first prove that the polynomial […]
  • Explicit Field Isomorphism of Finite FieldsExplicit Field Isomorphism of Finite Fields (a) Let $f_1(x)$ and $f_2(x)$ be irreducible polynomials over a finite field $\F_p$, where $p$ is a prime number. Suppose that $f_1(x)$ and $f_2(x)$ have the same degrees. Then show that fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic. (b) Show that the polynomials […]
  • Example of an Infinite Algebraic ExtensionExample of an Infinite Algebraic Extension Find an example of an infinite algebraic extension over the field of rational numbers $\Q$ other than the algebraic closure $\bar{\Q}$ of $\Q$ in $\C$.   Definition (Algebraic Element, Algebraic Extension). Let $F$ be a field and let $E$ be an extension of […]
  • The Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of UnityThe Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of Unity Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity.   Hint. Consider the field extension $\Q(\sqrt[p]{2}, \zeta)$, where $\zeta$ is a primitive $p$-th root of […]
  • Degree of an Irreducible Factor of a Composition of PolynomialsDegree of an Irreducible Factor of a Composition of Polynomials Let $f(x)$ be an irreducible polynomial of degree $n$ over a field $F$. Let $g(x)$ be any polynomial in $F[x]$. Show that the degree of each irreducible factor of the composite polynomial $f(g(x))$ is divisible by $n$.   Hint. Use the following fact. Let $h(x)$ is an […]
  • Galois Group of the Polynomial  $x^p-2$.Galois Group of the Polynomial $x^p-2$. Let $p \in \Z$ be a prime number. Then describe the elements of the Galois group of the polynomial $x^p-2$.   Solution. The roots of the polynomial $x^p-2$ are \[ \sqrt[p]{2}\zeta^k, k=0,1, \dots, p-1\] where $\sqrt[p]{2}$ is a real $p$-th root of $2$ and $\zeta$ […]
  • Polynomial $x^p-x+a$ is Irreducible and Separable Over a Finite FieldPolynomial $x^p-x+a$ is Irreducible and Separable Over a Finite Field Let $p\in \Z$ be a prime number and let $\F_p$ be the field of $p$ elements. For any nonzero element $a\in \F_p$, prove that the polynomial \[f(x)=x^p-x+a\] is irreducible and separable over $F_p$. (Dummit and Foote "Abstract Algebra" Section 13.5 Exercise #5 on […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Field Theory
Problems and Solutions in Field Theory in Abstract Algebra
Each Element in a Finite Field is the Sum of Two Squares

Let $F$ be a finite field. Prove that each element in the field $F$ is the sum of two squares...

Close