mmc%20rep%20of%20mcg

mmc%20rep%20of%20mcg

LoadingAdd to solve later

Sponsored Links

mmc%20rep%20of%20mcg


LoadingAdd to solve later

Sponsored Links

More from my site

  • Torsion Submodule, Integral Domain, and Zero DivisorsTorsion Submodule, Integral Domain, and Zero Divisors Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$. The set of torsion elements is denoted \[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\] (a) Prove that if $R$ is an […]
  • Find the Rank of a Matrix with a ParameterFind the Rank of a Matrix with a Parameter Find the rank of the following real matrix. \[ \begin{bmatrix} a & 1 & 2 \\ 1 &1 &1 \\ -1 & 1 & 1-a \end{bmatrix},\] where $a$ is a real number.   (Kyoto University, Linear Algebra Exam) Solution. The rank is the number of nonzero rows of a […]
  • Any Subgroup of Index 2 in a Finite Group is NormalAny Subgroup of Index 2 in a Finite Group is Normal Show that any subgroup of index $2$ in a group is a normal subgroup. Hint. Left (right) cosets partition the group into disjoint sets. Consider both left and right cosets. Proof. Let $H$ be a subgroup of index $2$ in a group $G$. Let $e \in G$ be the identity […]
  • Row Equivalence of Matrices is TransitiveRow Equivalence of Matrices is Transitive If $A, B, C$ are three $m \times n$ matrices such that $A$ is row-equivalent to $B$ and $B$ is row-equivalent to $C$, then can we conclude that $A$ is row-equivalent to $C$? If so, then prove it. If not, then provide a counterexample.   Definition (Row […]
  • Any Automorphism of the Field of Real Numbers Must be the Identity MapAny Automorphism of the Field of Real Numbers Must be the Identity Map Prove that any field automorphism of the field of real numbers $\R$ must be the identity automorphism.   Proof. We prove the problem by proving the following sequence of claims. Let $\phi:\R \to \R$ be an automorphism of the field of real numbers […]
  • Normal Subgroups, Isomorphic Quotients, But Not IsomorphicNormal Subgroups, Isomorphic Quotients, But Not Isomorphic Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$. Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.   Proof. We give a […]
  • If a Matrix is the Product of Two Matrices, is it Invertible?If a Matrix is the Product of Two Matrices, is it Invertible? (a) Let $A$ be a $6\times 6$ matrix and suppose that $A$ can be written as \[A=BC,\] where $B$ is a $6\times 5$ matrix and $C$ is a $5\times 6$ matrix. Prove that the matrix $A$ cannot be invertible. (b) Let $A$ be a $2\times 2$ matrix and suppose that $A$ can be […]
  • If the Quotient by the Center is Cyclic, then the Group is AbelianIf the Quotient by the Center is Cyclic, then the Group is Abelian Let $Z(G)$ be the center of a group $G$. Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian. Steps. Write $G/Z(G)=\langle \bar{g} \rangle$ for some $g \in G$. Any element $x\in G$ can be written as $x=g^a z$ for some $z \in Z(G)$ and $a \in \Z$. Using […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.