Quotient Group of Abelian Group is Abelian

Abelian Group problems and solutions

Problem 340

Let $G$ be an abelian group and let $N$ be a normal subgroup of $G$.
Then prove that the quotient group $G/N$ is also an abelian group.

 
LoadingAdd to solve later

Sponsored Links


Proof.

Each element of $G/N$ is a coset $aN$ for some $a\in G$.
Let $aN, bN$ be arbitrary elements of $G/N$, where $a, b\in G$.

Then we have
\begin{align*}
(aN)(bN)&=(ab)N \\
&=(ba)N && \text{since $G$ is abelian}\\
&=(bN)(aN).
\end{align*}
Here the first and the third equality is the definition of the group operation of $G/N$.

Remark

Since $N$ is a normal subgroup of $G$, the set of left cosets $G/H$ becomes a group with group operation
\[(aN)(bN)=(ab)N\] for any $a, b\in G$.

Related Question.

As an application, try the following problem.

Problem.
Let $H$ and $K$ be normal subgroups of a group $G$. Suppose that $H < K$ and the quotient group $G/H$ is abelian. Then prove that $G/K$ is also an abelian group.

The proof of this problem is given in the post ↴
If quotient $G/H$ is abelian group and $H < K \triangleleft G$, then $G/K$ is abelian.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Torsion Subgroup of an Abelian Group, Quotient is a Torsion-Free Abelian GroupTorsion Subgroup of an Abelian Group, Quotient is a Torsion-Free Abelian Group Let $A$ be an abelian group and let $T(A)$ denote the set of elements of $A$ that have finite order. (a) Prove that $T(A)$ is a subgroup of $A$. (The subgroup $T(A)$ is called the torsion subgroup of the abelian group $A$ and elements of $T(A)$ are called torsion […]
  • Two Quotients Groups are Abelian then Intersection Quotient is AbelianTwo Quotients Groups are Abelian then Intersection Quotient is Abelian Let $K, N$ be normal subgroups of a group $G$. Suppose that the quotient groups $G/K$ and $G/N$ are both abelian groups. Then show that the group \[G/(K \cap N)\] is also an abelian group.   Hint. We use the following fact to prove the problem. Lemma: For a […]
  • Commutator Subgroup and Abelian Quotient GroupCommutator Subgroup and Abelian Quotient Group Let $G$ be a group and let $D(G)=[G,G]$ be the commutator subgroup of $G$. Let $N$ be a subgroup of $G$. Prove that the subgroup $N$ is normal in $G$ and $G/N$ is an abelian group if and only if $N \supset D(G)$.   Definitions. Recall that for any $a, b \in G$, the […]
  • Normal Subgroups, Isomorphic Quotients, But Not IsomorphicNormal Subgroups, Isomorphic Quotients, But Not Isomorphic Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$. Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.   Proof. We give a […]
  • Any Subgroup of Index 2 in a Finite Group is NormalAny Subgroup of Index 2 in a Finite Group is Normal Show that any subgroup of index $2$ in a group is a normal subgroup. Hint. Left (right) cosets partition the group into disjoint sets. Consider both left and right cosets. Proof. Let $H$ be a subgroup of index $2$ in a group $G$. Let $e \in G$ be the identity […]
  • If Quotient $G/H$ is Abelian Group and $H < K \triangleleft G$, then $G/K$ is AbelianIf Quotient $G/H$ is Abelian Group and $H < K \triangleleft G$, then $G/K$ is Abelian Let $H$ and $K$ be normal subgroups of a group $G$. Suppose that $H < K$ and the quotient group $G/H$ is abelian. Then prove that $G/K$ is also an abelian group.   Solution. We will give two proofs. Hint (The third isomorphism theorem) Recall the third […]
  • If a Subgroup $H$ is in the Center of a Group $G$ and $G/H$ is Nilpotent, then $G$ is NilpotentIf a Subgroup $H$ is in the Center of a Group $G$ and $G/H$ is Nilpotent, then $G$ is Nilpotent Let $G$ be a nilpotent group and let $H$ be a subgroup such that $H$ is a subgroup in the center $Z(G)$ of $G$. Suppose that the quotient $G/H$ is nilpotent. Then show that $G$ is also nilpotent.   Definition (Nilpotent Group) We recall here the definition of a […]
  • Group of Order 18 is SolvableGroup of Order 18 is Solvable Let $G$ be a finite group of order $18$. Show that the group $G$ is solvable.   Definition Recall that a group $G$ is said to be solvable if $G$ has a subnormal series \[\{e\}=G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n=G\] such […]

You may also like...

1 Response

  1. 03/17/2017

    […] that [G/K cong (G/H)/(G/K).] Since the group $G/H$ is abelian by assumption, and in general a quotient group of an abelian group is abelian, it follows $(G/H)/(G/K)$ is an abelian […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Special Linear Group is a Normal Subgroup of General Linear Group

Let $G=\GL(n, \R)$ be the general linear group of degree $n$, that is, the group of all $n\times n$ invertible...

Close