# abelian-group-eye-catch

by Yu · Published · Updated

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

### More from my site

- Equivalent Definitions of Characteristic Subgroups. Center is Characteristic. Let $H$ be a subgroup of a group $G$. We call $H$ characteristic in $G$ if for any automorphism $\sigma\in \Aut(G)$ of $G$, we have $\sigma(H)=H$. (a) Prove that if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$. (b) Prove that the center […]
- The Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral Domain Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain. Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a […]
- Quiz: Possibilities For the Solution Set of a Homogeneous System of Linear Equations 4 multiple choice questions about possibilities for the solution set of a homogeneous system of linear equations. The solutions will be given after completing all problems. (The Ohio State University, Linear Algebra Exam)
- The Product of a Subgroup and a Normal Subgroup is a Subgroup Let $G$ be a group. Let $H$ be a subgroup of $G$ and let $N$ be a normal subgroup of $G$. The product of $H$ and $N$ is defined to be the subset \[H\cdot N=\{hn\in G\mid h \in H, n\in N\}.\] Prove that the product $H\cdot N$ is a subgroup of […]
- Quiz 5: Example and Non-Example of Subspaces in 3-Dimensional Space Problem 1 Let $W$ be the subset of the $3$-dimensional vector space $\R^3$ defined by \[W=\left\{ \mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\in \R^3 \quad \middle| \quad 2x_1x_2=x_3 \right\}.\] (a) Which of the following vectors are in the subset […]
- If the Quotient Ring is a Field, then the Ideal is Maximal Let $R$ be a ring with unit $1\neq 0$. Prove that if $M$ is an ideal of $R$ such that $R/M$ is a field, then $M$ is a maximal ideal of $R$. (Do not assume that the ring $R$ is commutative.) Proof. Let $I$ be an ideal of $R$ such that \[M \subset I \subset […]
- The Cyclotomic Field of 8-th Roots of Unity is $\Q(\zeta_8)=\Q(i, \sqrt{2})$ Let $\zeta_8$ be a primitive $8$-th root of unity. Prove that the cyclotomic field $\Q(\zeta_8)$ of the $8$-th root of unity is the field $\Q(i, \sqrt{2})$. Proof. Recall that the extension degree of the cyclotomic field of $n$-th roots of unity is given by […]
- Find Bases for the Null Space, Range, and the Row Space of a $5\times 4$ Matrix Let \[A=\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 &1 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 2 & 2 & 2\\ 0 & 0 & 0 & 0 \end{bmatrix}.\] (a) Find a basis for the null space $\calN(A)$. (b) Find a basis of the range $\calR(A)$. (c) Find a basis of the […]