Square Root of an Upper Triangular Matrix. How Many Square Roots Exist?

Linear Algebra exam problems and solutions at University of California, Berkeley

Problem 133

Find a square root of the matrix
\[A=\begin{bmatrix}
1 & 3 & -3 \\
0 &4 &5 \\
0 & 0 & 9
\end{bmatrix}.\]

How many square roots does this matrix have?

(University of California, Berkeley Qualifying Exam)
 
LoadingAdd to solve later

Sponsored Links

Proof.

We will find all matrices $B$ such that $B^2=A$. Such matrices $B$ are square roots of the matrix $A$.

Note that since $A$ is a diagonal matrix, the eigenvalues of $A$ are diagonal entries $1, 4, 9$. Since $A$ has three distinct eigenvalues, it is diagonalizable.
Solving $(A-\lambda I)\mathbf{x}=\mathbf{0}$ for $\lambda=1,4,9$, we find eigenvectors corresponding to eigenvalues $1, 4, 9$ are respectively

\[ \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \quad
\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} , \quad
\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}.\]

Thus the invertible matrix
\[P=\begin{bmatrix}
1 & 1 & 0 \\
0 &1 &1 \\
0 & 0 & 1
\end{bmatrix}\] diagonalizes the matrix $A$, that is, we have
\[P^{-1} AP=\begin{bmatrix}
1 & 0 & 0 \\
0 &4 &0 \\
0 & 0 & 9
\end{bmatrix}.\]


Then if $B^2=A$, then we have $(P^{-1}BP)(P^{-1}B)=P^{-1}AP$.
Let $A’=P^{-1}AP$ and $B’=P^{-1}BP$.

Since we have $B’^2=A’$, we have $B’A’=B’^3=A’B’$.
Since $A’$ is diagonal with distinct diagonal entries, this implies that $B’$ is also a diagonal matrix.

A diagonal matrix $B’$ satisfying $B’^2=A’=\begin{bmatrix}
1 & 0 & 0 \\
0 &4 &0 \\
0 & 0 & 9
\end{bmatrix}$ is one of
\[\begin{bmatrix}
\pm 1 & 0 & 0 \\
0 &\pm 2 &0 \\
0 & 0 & \pm 3
\end{bmatrix}.\] Hence $B$ must be one of
\[P\begin{bmatrix}
\pm 1 & 0 & 0 \\
0 &\pm 2 &0 \\
0 & 0 & \pm 3
\end{bmatrix}P^{-1}.\] The inverse matrix of $P$ can be calculated as
\[P^{-1}=\begin{bmatrix}
1 & -1 & 1 \\
0 &1 &-1 \\
0 & 0 & 1
\end{bmatrix}.\] Therefore, all the square roots of the matrix $A$ are
\[\begin{bmatrix}
1 & 1 & 0 \\
0 &1 &1 \\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
\pm 1 & 0 & 0 \\
0 &\pm 2 &0 \\
0 & 0 & \pm 3
\end{bmatrix}\begin{bmatrix}
1 & -1 & 1 \\
0 &1 &-1 \\
0 & 0 & 1
\end{bmatrix}\] and we have $8$ square root matrices.


For example, when the diagonal matrix has all positive entries, then one of the square roots is
\[\begin{bmatrix}
1 & 1 & 0 \\
0 &1 &1 \\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 &0 \\
0 & 0 & 3
\end{bmatrix}\begin{bmatrix}
1 & -1 & 1 \\
0 &1 &-1 \\
0 & 0 & 1
\end{bmatrix}=\begin{bmatrix}
1 & 1 & -1 \\
0 &2 &1 \\
0 & 0 & 3
\end{bmatrix}.\]

Related Question.

Problem.
Prove that a positive definite matrix has a unique positive definite square root.

For a solution of this problem, see the post
A Positive Definite Matrix Has a Unique Positive Definite Square Root


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra Problems and Solutions
Find a Basis For the Null Space of a Given $2\times 3$ Matrix

Let \[A=\begin{bmatrix} 1 & 1 & 0 \\ 1 &1 &0 \end{bmatrix}\] be a matrix. Find a basis of the...

Close