Stochastic Matrix (Markov Matrix) and its Eigenvalues and Eigenvectors

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 34

(a) Let

\[A=\begin{bmatrix}
a_{11} & a_{12}\\
a_{21}& a_{22}
\end{bmatrix}\] be a matrix such that $a_{11}+a_{12}=1$ and $a_{21}+a_{22}=1$. Namely, the sum of the entries in each row is $1$.

(Such a matrix is called (right) stochastic matrix (also termed probability matrix, transition matrix, substitution matrix, or Markov matrix).)

Then prove that the matrix $A$ has an eigenvalue $1$.

(b) Find all the eigenvalues of the matrix
\[B=\begin{bmatrix}
0.3 & 0.7\\
0.6& 0.4
\end{bmatrix}.\]

(c) For each eigenvalue of $B$, find the corresponding eigenvectors.

LoadingAdd to solve later
Sponsored Links

Hint.

  1. For (a), consider the vector $\mathbf{x}=\begin{bmatrix}
    1 \\
    1
    \end{bmatrix}$.
  2. For (b), use (a) and consider the trace of $B$ and its relation to eigenvalues.
    For this relation, see the problem Determinant/trace and eigenvalues of a matrix.

 

Solution.

(a) Prove that the matrix $A$ has an eigenvalue $1$.

 Let $\mathbf{x}=\begin{bmatrix}
1 \\
1
\end{bmatrix}$ and we compute
\begin{align*}
A \mathbf{x}=\begin{bmatrix}
a_{11} & a_{12}\\
a_{21}& a_{22}
\end{bmatrix}
\begin{bmatrix}
1 \\
1
\end{bmatrix}
=\begin{bmatrix}
a_{11}+a_{12} \\
a_{21}+a_{22}
\end{bmatrix}
=\begin{bmatrix}
1 \\
1
\end{bmatrix}
=1\cdot \mathbf{x}.
\end{align*}
This shows that $A$ has the eigenvalue $1$.

(b) Find all the eigenvalues of the matrix $B$.

 Note that the matrix $B$ is of the type of the matrix in (a).
Thus the matrix $B$ has the eigenvalue $1$. Since $B$ is $2$ by $2$ matrix, it has two eigenvalues counting multiplicities. To find the other eigenvalue, we note that the trace is the sum of the eigenvalues.

Thus we have
\[\tr(B)=0.3+0.4=1+\lambda,\] where $\lambda$ is the second eigenvalue. Hence another eigenvalue is $\lambda=-0.3$.

(c) For each eigenvalue of $B$, find the corresponding eigenvectors.

By solving $(B-I)\mathbf{x}=\mathbf{0}$ and $(B+0.3I)\mathbf{x}=\mathbf{0}$, we find that
\[\begin{bmatrix}
1 \\
1
\end{bmatrix}t \quad \text{ and } \quad \begin{bmatrix}
-7 \\
6
\end{bmatrix}t\] for any nonzero scalar $t$ are eigenvectors corresponding to eigenvalues $1$ and $-0.3$, respectively.

Comment.

For some specific matrices, we can find eigenvalues without solving the characteristic polynomials like we did in part (b).


LoadingAdd to solve later

Sponsored Links

More from my site

  • Eigenvalues of a Stochastic Matrix is Always Less than or Equal to 1Eigenvalues of a Stochastic Matrix is Always Less than or Equal to 1 Let $A=(a_{ij})$ be an $n \times n$ matrix. We say that $A=(a_{ij})$ is a right stochastic matrix if each entry $a_{ij}$ is nonnegative and the sum of the entries of each row is $1$. That is, we have \[a_{ij}\geq 0 \quad \text{ and } \quad a_{i1}+a_{i2}+\cdots+a_{in}=1\] for $1 […]
  • Find the Limit of a MatrixFind the Limit of a Matrix Let \[A=\begin{bmatrix} \frac{1}{7} & \frac{3}{7} & \frac{3}{7} \\ \frac{3}{7} &\frac{1}{7} &\frac{3}{7} \\ \frac{3}{7} & \frac{3}{7} & \frac{1}{7} \end{bmatrix}\] be $3 \times 3$ matrix. Find \[\lim_{n \to \infty} A^n.\] (Nagoya University Linear […]
  • Matrices Satisfying $HF-FH=-2F$Matrices Satisfying $HF-FH=-2F$ Let $F$ and $H$ be an $n\times n$ matrices satisfying the relation \[HF-FH=-2F.\] (a) Find the trace of the matrix $F$. (b) Let $\lambda$ be an eigenvalue of $H$ and let $\mathbf{v}$ be an eigenvector corresponding to $\lambda$. Show that there exists an positive integer $N$ […]
  • Trace of the Inverse Matrix of a Finite Order MatrixTrace of the Inverse Matrix of a Finite Order Matrix Let $A$ be an $n\times n$ matrix such that $A^k=I_n$, where $k\in \N$ and $I_n$ is the $n \times n$ identity matrix. Show that the trace of $(A^{-1})^{\trans}$ is the conjugate of the trace of $A$. That is, show that […]
  • Determine Whether Given Matrices are SimilarDetermine Whether Given Matrices are Similar (a) Is the matrix $A=\begin{bmatrix} 1 & 2\\ 0& 3 \end{bmatrix}$ similar to the matrix $B=\begin{bmatrix} 3 & 0\\ 1& 2 \end{bmatrix}$?   (b) Is the matrix $A=\begin{bmatrix} 0 & 1\\ 5& 3 \end{bmatrix}$ similar to the matrix […]
  • Transpose of a Matrix and Eigenvalues and Related QuestionsTranspose of a Matrix and Eigenvalues and Related Questions Let $A$ be an $n \times n$ real matrix. Prove the followings. (a) The matrix $AA^{\trans}$ is a symmetric matrix. (b) The set of eigenvalues of $A$ and the set of eigenvalues of $A^{\trans}$ are equal. (c) The matrix $AA^{\trans}$ is non-negative definite. (An $n\times n$ […]
  • Find the Formula for the Power of a Matrix Using Linear Recurrence RelationFind the Formula for the Power of a Matrix Using Linear Recurrence Relation Suppose that $A$ is $2\times 2$ matrix that has eigenvalues $-1$ and $3$. Then for each positive integer $n$ find $a_n$ and $b_n$ such that \[A^{n+1}=a_nA+b_nI,\] where $I$ is the $2\times 2$ identity matrix.   Solution. Since $-1, 3$ are eigenvalues of the […]
  • Solve Linear Recurrence Relation Using Linear Algebra (Eigenvalues and Eigenvectors)Solve Linear Recurrence Relation Using Linear Algebra (Eigenvalues and Eigenvectors) Let $V$ be a real vector space of all real sequences \[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\] Let $U$ be the subspace of $V$ consisting of all real sequences that satisfy the linear recurrence relation \[a_{k+2}-5a_{k+1}+3a_{k}=0\] for $k=1, 2, \dots$. Let $T$ be […]

You may also like...

1 Response

  1. 08/04/2016

    […] The matrix $A$ is called a stochastic matrix (or Markov matrix, probability matrix). For the definition of these terminology and a similar problem, see problem Stochastic matrix (Markov matrix) and its eigenvalues and eigenvectors. […]

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
MIT Linear Algebra Exam problems and solutions
The Subspace of Matrices that are Diagonalized by a Fixed Matrix

Suppose that $S$ is a fixed invertible $3$ by $3$ matrix. This question is about all the matrices $A$ that...

Close