Submodule Consists of Elements Annihilated by Some Power of an Ideal

Module Theory problems and solutions

Problem 417

Let $R$ be a ring with $1$ and let $M$ be an $R$-module. Let $I$ be an ideal of $R$.
Let $M’$ be the subset of elements $a$ of $M$ that are annihilated by some power $I^k$ of the ideal $I$, where the power $k$ may depend on $a$.
Prove that $M’$ is a submodule of $M$.

 
LoadingAdd to solve later
Sponsored Links

Proof.

Let us define the subset of $M$ by
\[N_i=:\{a\in M \mid sa=0 \text{ for all } s\in I^i\}.\] That is, $N_i$ consists of elements of $M$ that are annihilated by the power $I^i$.


We claim that:

  1. the subset $N_i$ is a submodule of $M$ for each integer $i$, and
  2. we have the ascending chain
    \[N_1 \subset N_2 \subset \cdots,\] and
  3. $M’=\cup_{i=1}^{\infty} N_i$.

Once we prove these claims, the result follows from the previous problem.


Let us prove claim 1. Let $a, b\in N_i$ and let $r\in R$.
For any $s\in I^i$ we have
\begin{align*}
s(a+b)&=sa+sb=0
\end{align*}
because $a, b$ are annihilated by $s\in I^i$.
Also, we have
\begin{align*}
s(ra)=(sr)a=0
\end{align*}
since $sr\in I$ as $I$ is an ideal.
Thus, $N_i$ is a submodule of $M$.


To prove claim 2, we note the inclusion
\[I^{i+1}=I^i\cdot I\subset I^{i}.\] Thus each $a\in N_i$ is annihilated by elements in $I^{i+1}$.
Hence $N_i\subset N_{i+1}$ for any $i$, and this proves claim 2.


The claim 3 follows from the definition of the subset $M’$.


Since the union of submodules in an ascending chain of submodules is a submodule, we conclude that $M’$ is a submodule of $M$.

(For a proof of this fact, see the post “Ascending chain of submodules and union of its submodules“.)


LoadingAdd to solve later

Sponsored Links

More from my site

  • Ascending Chain of Submodules and Union of its SubmodulesAscending Chain of Submodules and Union of its Submodules Let $R$ be a ring with $1$. Let $M$ be an $R$-module. Consider an ascending chain \[N_1 \subset N_2 \subset \cdots\] of submodules of $M$. Prove that the union \[\cup_{i=1}^{\infty} N_i\] is a submodule of $M$.   Proof. To simplify the notation, let us […]
  • Annihilator of a Submodule is a 2-Sided Ideal of a RingAnnihilator of a Submodule is a 2-Sided Ideal of a Ring Let $R$ be a ring with $1$ and let $M$ be a left $R$-module. Let $S$ be a subset of $M$. The annihilator of $S$ in $R$ is the subset of the ring $R$ defined to be \[\Ann_R(S)=\{ r\in R\mid rx=0 \text{ for all } x\in S\}.\] (If $rx=0, r\in R, x\in S$, then we say $r$ annihilates […]
  • Torsion Submodule, Integral Domain, and Zero DivisorsTorsion Submodule, Integral Domain, and Zero Divisors Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$. The set of torsion elements is denoted \[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\] (a) Prove that if $R$ is an […]
  • A Module $M$ is Irreducible if and only if $M$ is isomorphic to $R/I$ for a Maximal Ideal $I$.A Module $M$ is Irreducible if and only if $M$ is isomorphic to $R/I$ for a Maximal Ideal $I$. Let $R$ be a commutative ring with $1$ and let $M$ be an $R$-module. Prove that the $R$-module $M$ is irreducible if and only if $M$ is isomorphic to $R/I$, where $I$ is a maximal ideal of $R$, as an $R$-module.     Definition (Irreducible module). An […]
  • A Module is Irreducible if and only if It is a Cyclic Module With Any Nonzero Element as GeneratorA Module is Irreducible if and only if It is a Cyclic Module With Any Nonzero Element as Generator Let $R$ be a ring with $1$. A nonzero $R$-module $M$ is called irreducible if $0$ and $M$ are the only submodules of $M$. (It is also called a simple module.) (a) Prove that a nonzero $R$-module $M$ is irreducible if and only if $M$ is a cyclic module with any nonzero element […]
  • Basic Exercise Problems in Module TheoryBasic Exercise Problems in Module Theory Let $R$ be a ring with $1$ and $M$ be a left $R$-module. (a) Prove that $0_Rm=0_M$ for all $m \in M$. Here $0_R$ is the zero element in the ring $R$ and $0_M$ is the zero element in the module $M$, that is, the identity element of the additive group $M$. To simplify the […]
  • Nilpotent Ideal and Surjective Module HomomorphismsNilpotent Ideal and Surjective Module Homomorphisms Let $R$ be a commutative ring and let $I$ be a nilpotent ideal of $R$. Let $M$ and $N$ be $R$-modules and let $\phi:M\to N$ be an $R$-module homomorphism. Prove that if the induced homomorphism $\bar{\phi}: M/IM \to N/IN$ is surjective, then $\phi$ is surjective.   […]
  • Finitely Generated Torsion Module Over an Integral Domain Has a Nonzero AnnihilatorFinitely Generated Torsion Module Over an Integral Domain Has a Nonzero Annihilator (a) Let $R$ be an integral domain and let $M$ be a finitely generated torsion $R$-module. Prove that the module $M$ has a nonzero annihilator. In other words, show that there is a nonzero element $r\in R$ such that $rm=0$ for all $m\in M$. Here $r$ does not depend on […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Module Theory
Module Theory problems and solutions
Ascending Chain of Submodules and Union of its Submodules

Let $R$ be a ring with $1$. Let $M$ be an $R$-module. Consider an ascending chain \[N_1 \subset N_2 \subset...

Close