Subset of Vectors Perpendicular to Two Vectors is a Subspace

Problems and solutions in Linear Algebra

Problem 119

Let $\mathbf{a}$ and $\mathbf{b}$ be fixed vectors in $\R^3$, and let $W$ be the subset of $\R^3$ defined by
\[W=\{\mathbf{x}\in \R^3 \mid \mathbf{a}^{\trans} \mathbf{x}=0 \text{ and } \mathbf{b}^{\trans} \mathbf{x}=0\}.\]

Prove that the subset $W$ is a subspace of $\R^3$.
 
LoadingAdd to solve later

Sponsored Links


Proof.

We prove the following criteria for the subset $W$ to be a subspace of $\R^3$.

(a) The zero vector $\mathbf{0} \in \R^3$ is in $W$.

(b) If $\mathbf{x}, \mathbf{y} \in W$, then $\mathbf{x}+\mathbf{y}\in W$.

(c) If $\mathbf{x} \in W$ and $c\in \R$, then $c\mathbf{x} \in W$.


For (a), note that $\mathbf{a}^{\trans} \mathbf{0}=0$ and $\mathbf{b}^{\trans} \mathbf{0}=0$. Thus the zero vector $\mathbf{0}\in \R^3$ is in $W$.


To check (b), let $\mathbf{x}, \mathbf{y} \in W$. Then we have the following relations.
\[\mathbf{a}^{\trans} \mathbf{x}=0 \text{ and } \mathbf{b}^{\trans} \mathbf{x}=0,
\text{ and }
\mathbf{a}^{\trans} \mathbf{y}=0 \text{ and } \mathbf{b}^{\trans} \mathbf{y}=0.\tag{*}\] To show that $\mathbf{x}+\mathbf{y} \in W$, we need to show that
\[\mathbf{a}^{\trans}(\mathbf{x}+\mathbf{y})=0 \text{ and } \mathbf{b}^{\trans}(\mathbf{x}+\mathbf{y})=0.\]

We first compute
\begin{align*}
\mathbf{a}^{\trans}(\mathbf{x}+\mathbf{y}) &=\mathbf{a}^{\trans}\mathbf{x}+\mathbf{a}^{\trans}\mathbf{y}\\
&= 0+0=0
\end{align*}
by the relations (*).
Similarly, we have
\begin{align*}
\mathbf{b}^{\trans}(\mathbf{x}+\mathbf{y}) &=\mathbf{b}^{\trans}\mathbf{x}+\mathbf{b}^{\trans}\mathbf{y}\\
&= 0+0=0
\end{align*}
by the relations (*).

Thus the vector $\mathbf{x}+\mathbf{y}$ satisfies the defining relations for $W$, hence $\mathbf{x}+\mathbf{y} \in W$.


Finally, to prove (c), let $\mathbf{x} \in W$ and let $c\in \R$.
Since $\mathbf{x} \in W$, we have
\[\mathbf{a}^{\trans} \mathbf{x}=0 \text{ and } \mathbf{b}^{\trans} \mathbf{x}=0.\] Multiplying by the scalar $c$ from the left, we obtain
\[\mathbf{a}^{\trans} (\mathbf{cx})=0 \text{ and } \mathbf{b}^{\trans} (\mathbf{cx})=0.\] (Note that since $c$ is a scalar, we can switch the order of the product of $c$ and $\mathbf{a}^{\trans}$. Same for $c$ and $\mathbf{b}^{\trans}$.)

These equalities proves that the vector $c\mathbf{x}$ satisfies the defining relation for $W$. Thus $c\mathbf{x} \in W$.


Therefore the criteria (a)-(c) are all met, and we conclude that $W$ is a subspace of $\R^3$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Express a Vector as a Linear Combination of Other Vectors

Express the vector $\mathbf{b}=\begin{bmatrix} 2 \\ 13 \\ 6 \end{bmatrix}$ as a linear combination of the vectors \[\mathbf{v}_1=\begin{bmatrix} 1 \\...

Close