Surjective Group Homomorphism to $\Z$ and Direct Product of Abelian Groups

Abelian Group problems and solutions

Problem 342

Let $G$ be an abelian group and let $f: G\to \Z$ be a surjective group homomorphism.

Prove that we have an isomorphism of groups:
\[G \cong \ker(f)\times \Z.\]

 
LoadingAdd to solve later
Sponsored Links

Proof.

Since $f:G\to \Z$ is surjective, there exists an element $a\in G$ such that
\[f(a)=1.\] Let $H=\langle a \rangle$ be the subgroup of $G$ generated by the element $a$.

We show that $G\cong \ker(f)\times H$.
To prove this isomorphism, it suffices to prove the following three conditions.

  1. The subgroups $\ker(f)$ and $H$ are normal in $G$.
  2. The intersection is trivial: $\ker(f) \cap H=\{e\}$, where $e$ is the identity element of $G$.
  3. Every element of $G$ is a product of elements of $\ker(f)$ and $H$. That is, $G=\ker(f)H$.

The first condition follows immediately since the group $G$ is abelian, hence all the subgroups of $G$ are normal.


To check condition 2, let $x\in \ker(f) \cap H$.
Then $x=a^n$ for some $n\in \Z$ and we have
\begin{align*}
0&=f(x) && \text{since $x \in \ker(f)$}\\
&=f(a^n)\\
&=nf(a) && \text{since $f$ is a homomorphism.}\\
&=n &&\text{since $f(a)=1$}.
\end{align*}
Thus, as a result we have $x=a^0=e$, and hence $\ker(f) \cap H=\{e\}$.
So condition 2 is met.


To prove condition 3, let $b$ be an arbitrary element in $G$.
Let $n=f(b) \in \Z$. Then we have
\[f(b)=n=f(a^n),\] and thus we have
\[f(ba^{-n})=0.\] It follows that $ba^{-n}\in \ker(f)$.
So there exists $z\in \ker(f)$ such that $ba^{-n}=z$.
Therefore we have
\begin{align*}
b=za^n\in \ker(f)H.
\end{align*}
This implies that $G=\ker(f)H$.


We have proved all the conditions, hence we obtain
\[G\cong \ker(f)\times H.\] Since $H$ is a cyclic group of infinite order, it is isomorphic to $\Z$.
(If $H$ has a finite order, then there exists a positive integer $n$ such that $a^n=e$. Then we have
\begin{align*}
0=f(e)=f(a^n)=nf(a)=n,
\end{align*}
and this contradicts the positivity of $n$.)

Combining these isomorphisms, we have
\[G\cong \ker(f)\times \Z,\] as required.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Fundamental Theorem of Finitely Generated Abelian Groups and its applicationFundamental Theorem of Finitely Generated Abelian Groups and its application In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem. Problem. Let $G$ be a finite abelian group of order $n$. If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]
  • Isomorphism Criterion of Semidirect Product of GroupsIsomorphism Criterion of Semidirect Product of Groups Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism. The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation \[(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),\] where $a_i […]
  • Group Homomorphism, Preimage, and Product of GroupsGroup Homomorphism, Preimage, and Product of Groups Let $G, G'$ be groups and let $f:G \to G'$ be a group homomorphism. Put $N=\ker(f)$. Then show that we have \[f^{-1}(f(H))=HN.\]   Proof. $(\subset)$ Take an arbitrary element $g\in f^{-1}(f(H))$. Then we have $f(g)\in f(H)$. It follows that there exists $h\in H$ […]
  • A Group Homomorphism is Injective if and only if MonicA Group Homomorphism is Injective if and only if Monic Let $f:G\to G'$ be a group homomorphism. We say that $f$ is monic whenever we have $fg_1=fg_2$, where $g_1:K\to G$ and $g_2:K \to G$ are group homomorphisms for some group $K$, we have $g_1=g_2$. Then prove that a group homomorphism $f: G \to G'$ is injective if and only if it is […]
  • Abelian Normal subgroup, Quotient Group, and Automorphism GroupAbelian Normal subgroup, Quotient Group, and Automorphism Group Let $G$ be a finite group and let $N$ be a normal abelian subgroup of $G$. Let $\Aut(N)$ be the group of automorphisms of $G$. Suppose that the orders of groups $G/N$ and $\Aut(N)$ are relatively prime. Then prove that $N$ is contained in the center of […]
  • Subgroup of Finite Index Contains a Normal Subgroup of Finite IndexSubgroup of Finite Index Contains a Normal Subgroup of Finite Index Let $G$ be a group and let $H$ be a subgroup of finite index. Then show that there exists a normal subgroup $N$ of $G$ such that $N$ is of finite index in $G$ and $N\subset H$.   Proof. The group $G$ acts on the set of left cosets $G/H$ by left multiplication. Hence […]
  • Group of $p$-Power Roots of 1 is Isomorphic to a Proper Quotient of ItselfGroup of $p$-Power Roots of 1 is Isomorphic to a Proper Quotient of Itself Let $p$ be a prime number. Let \[G=\{z\in \C \mid z^{p^n}=1\} \] be the group of $p$-power roots of $1$ in $\C$. Show that the map $\Psi:G\to G$ mapping $z$ to $z^p$ is a surjective homomorphism. Also deduce from this that $G$ is isomorphic to a proper quotient of $G$ […]
  • Group Homomorphism from $\Z/n\Z$ to $\Z/m\Z$ When $m$ Divides $n$Group Homomorphism from $\Z/n\Z$ to $\Z/m\Z$ When $m$ Divides $n$ Let $m$ and $n$ be positive integers such that $m \mid n$. (a) Prove that the map $\phi:\Zmod{n} \to \Zmod{m}$ sending $a+n\Z$ to $a+m\Z$ for any $a\in \Z$ is well-defined. (b) Prove that $\phi$ is a group homomorphism. (c) Prove that $\phi$ is surjective. (d) Determine […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Group Theory
Abelian Group problems and solutions
If Quotient $G/H$ is Abelian Group and $H < K \triangleleft G$, then $G/K$ is Abelian

Let $H$ and $K$ be normal subgroups of a group $G$. Suppose that $H < K$ and the quotient group...

Close