Tagged: additive group

The Additive Group $\R$ is Isomorphic to the Multiplicative Group $\R^{+}$ by Exponent Function

Problem 322

Let $\R=(\R, +)$ be the additive group of real numbers and let $\R^{\times}=(\R\setminus\{0\}, \cdot)$ be the multiplicative group of real numbers.

(a) Prove that the map $\exp:\R \to \R^{\times}$ defined by
\[\exp(x)=e^x\] is an injective group homomorphism.

(b) Prove that the additive group $\R$ is isomorphic to the multiplicative group
\[\R^{+}=\{x \in \R \mid x > 0\}.\]

Read solution

LoadingAdd to solve later

The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$

Problem 283

Let $F$ be a field and let
\[H(F)=\left\{\, \begin{bmatrix}
1 & a & b \\
0 &1 &c \\
0 & 0 & 1
\end{bmatrix} \quad \middle| \quad \text{ for any} a,b,c\in F\, \right\}\] be the Heisenberg group over $F$.
(The group operation of the Heisenberg group is matrix multiplication.)

Determine which matrices lie in the center of $H(F)$ and prove that the center $Z\big(H(F)\big)$ is isomorphic to the additive group $F$.

Read solution

LoadingAdd to solve later