Tagged: commutative ring

Finitely Generated Torsion Module Over an Integral Domain Has a Nonzero Annihilator

Problem 432

(a) Let $R$ be an integral domain and let $M$ be a finitely generated torsion $R$-module.
Prove that the module $M$ has a nonzero annihilator.
In other words, show that there is a nonzero element $r\in R$ such that $rm=0$ for all $m\in M$.
Here $r$ does not depend on $m$.

(b) Find an example of an integral domain $R$ and a torsion $R$-module $M$ whose annihilator is the zero ideal.

 
Read solution

LoadingAdd to solve later

Linearly Dependent Module Elements / Module Homomorphism and Linearly Independency

Problem 415

(a) Let $R$ be a commutative ring. If we regard $R$ as a left $R$-module, then prove that any two distinct elements of the module $R$ are linearly dependent.

(b) Let $f: M\to M’$ be a left $R$-module homomorphism. Let $\{x_1, \dots, x_n\}$ be a subset in $M$. Prove that if the set $\{f(x_1), \dots, f(x_n)\}$ is linearly independent, then the set $\{x_1, \dots, x_n\}$ is also linearly independent.
 
Read solution

LoadingAdd to solve later

Torsion Submodule, Integral Domain, and Zero Divisors

Problem 409

Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$.
The set of torsion elements is denoted
\[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\]

(a) Prove that if $R$ is an integral domain, then $\Tor(M)$ is a submodule of $M$.
(Remark: an integral domain is a commutative ring by definition.) In this case the submodule $\Tor(M)$ is called torsion submodule of $M$.

(b) Find an example of a ring $R$ and an $R$-module $M$ such that $\Tor(M)$ is not a submodule.

(c) If $R$ has nonzero zero divisors, then show that every nonzero $R$-module has nonzero torsion element.

 
Read solution

LoadingAdd to solve later

Generators of the Augmentation Ideal in a Group Ring

Problem 302

Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by
\[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\] where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring homomorphism, called the augmentation map and the kernel of $\epsilon$ is called the augmentation ideal.

(a) Prove that the augmentation ideal in the group ring $RG$ is generated by $\{g-e \mid g\in G\}$.

(b) Prove that if $G=\langle g\rangle$ is a finite cyclic group generated by $g$, then the augmentation ideal is generated by $g-e$.
 
Read solution

LoadingAdd to solve later

Primary Ideals, Prime Ideals, and Radical Ideals

Problem 247

Let $R$ be a commutative ring with unity. A proper ideal $I$ of $R$ is called primary if whenever $ab \in I$ for $a, b\in R$, then either $a\in I$ or $b^n\in I$ for some positive integer $n$.

(a) Prove that a prime ideal $P$ of $R$ is primary.

(b) If $P$ is a prime ideal and $a^n\in P$ for some $a\in R$ and a positive integer $n$, then show that $a\in P$.

(c) If $P$ is a prime ideal, prove that $\sqrt{P}=P$.

(d) If $Q$ is a primary ideal, prove that the radical ideal $\sqrt{Q}$ is a prime ideal.

 
Read solution

LoadingAdd to solve later