Consider the $2\times 2$ matrix
\[A=\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta \end{bmatrix},\]
where $\theta$ is a real number $0\leq \theta < 2\pi$.

(a) Find the characteristic polynomial of the matrix $A$.

(b) Find the eigenvalues of the matrix $A$.

(c) Determine the eigenvectors corresponding to each of the eigenvalues of $A$.

Consider the complex matrix
\[A=\begin{bmatrix}
\sqrt{2}\cos x & i \sin x & 0 \\
i \sin x &0 &-i \sin x \\
0 & -i \sin x & -\sqrt{2} \cos x
\end{bmatrix},\]
where $x$ is a real number between $0$ and $2\pi$.

Determine for which values of $x$ the matrix $A$ is diagonalizable.
When $A$ is diagonalizable, find a diagonal matrix $D$ so that $P^{-1}AP=D$ for some nonsingular matrix $P$.

A square matrix $A$ is called idempotent if $A^2=A$.

(a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$.
Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$.

Prove that $P$ is an idempotent matrix.

(b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be unit vectors in $\R^n$ such that $\mathbf{u}$ and $\mathbf{v}$ are orthogonal.
Let $Q=\mathbf{u}\mathbf{u}^{\trans}+\mathbf{v}\mathbf{v}^{\trans}$.

Prove that $Q$ is an idempotent matrix.

(c) Prove that each nonzero vector of the form $a\mathbf{u}+b\mathbf{v}$ for some $a, b\in \R$ is an eigenvector corresponding to the eigenvalue $1$ for the matrix $Q$ in part (b).

You may use the following information without proving it.
The eigenvalues of $A$ are $-1, 0, 1$. The eigenspaces are given by
\[E_{-1}=\Span\left\{\, \begin{bmatrix}
3 \\
-1 \\
-5
\end{bmatrix} \,\right\}, \quad E_{0}=\Span\left\{\, \begin{bmatrix}
-2 \\
1 \\
4
\end{bmatrix} \,\right\}, \quad E_{1}=\Span\left\{\, \begin{bmatrix}
-4 \\
2 \\
7
\end{bmatrix} \,\right\}.\]

(The Ohio State University, Linear Algebra Final Exam Problem)

Let $T:\R^2 \to \R^2$ be a linear transformation and let $A$ be the matrix representation of $T$ with respect to the standard basis of $\R^2$.

Prove that the following two statements are equivalent.

(a) There are exactly two distinct lines $L_1, L_2$ in $\R^2$ passing through the origin that are mapped onto themselves:
\[T(L_1)=L_1 \text{ and } T(L_2)=L_2.\]

(b) The matrix $A$ has two distinct nonzero real eigenvalues.

Let $A$ be a real symmetric $n\times n$ matrix with $0$ as a simple eigenvalue (that is, the algebraic multiplicity of the eigenvalue $0$ is $1$), and let us fix a vector $\mathbf{v}\in \R^n$.

(a) Prove that for sufficiently small positive real $\epsilon$, the equation
\[A\mathbf{x}+\epsilon\mathbf{x}=\mathbf{v}\]
has a unique solution $\mathbf{x}=\mathbf{x}(\epsilon) \in \R^n$.

(b) Evaluate
\[\lim_{\epsilon \to 0^+} \epsilon \mathbf{x}(\epsilon)\]
in terms of $\mathbf{v}$, the eigenvectors of $A$, and the inner product $\langle\, ,\,\rangle$ on $\R^n$.

(University of California, Berkeley, Linear Algebra Qualifying Exam)

Let $A$ be an $n\times n$ real symmetric matrix.
Prove that there exists an eigenvalue $\lambda$ of $A$ such that for any vector $\mathbf{v}\in \R^n$, we have the inequality
\[\mathbf{v}\cdot A\mathbf{v} \leq \lambda \|\mathbf{v}\|^2.\]

Determine whether each of the following statements is True or False.

(a) If $A$ and $B$ are $n \times n$ matrices, and $P$ is an invertible $n \times n$ matrix such that $A=PBP^{-1}$, then $\det(A)=\det(B)$.

(b) If the characteristic polynomial of an $n \times n$ matrix $A$ is
\[p(\lambda)=(\lambda-1)^n+2,\]
then $A$ is invertible.

(c) If $A^2$ is an invertible $n\times n$ matrix, then $A^3$ is also invertible.

(d) If $A$ is a $3\times 3$ matrix such that $\det(A)=7$, then $\det(2A^{\trans}A^{-1})=2$.

(e) If $\mathbf{v}$ is an eigenvector of an $n \times n$ matrix $A$ with corresponding eigenvalue $\lambda_1$, and if $\mathbf{w}$ is an eigenvector of $A$ with corresponding eigenvalue $\lambda_2$, then $\mathbf{v}+\mathbf{w}$ is an eigenvector of $A$ with corresponding eigenvalue $\lambda_1+\lambda_2$.

(Stanford University, Linear Algebra Exam Problem)

Let $A$ and $B$ be $n\times n$ matrices.
Suppose that $A$ and $B$ have the same eigenvalues $\lambda_1, \dots, \lambda_n$ with the same corresponding eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$.
Prove that if the eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly independent, then $A=B$.

Determine all $2\times 2$ matrices $A$ such that $A$ has eigenvalues $2$ and $-1$ with corresponding eigenvectors
\[\begin{bmatrix}
1 \\
0
\end{bmatrix} \text{ and } \begin{bmatrix}
2 \\
1
\end{bmatrix},\]
respectively.