# Tagged: finite group

## Problem 493

Let $G$ be a finite group and let $A, B$ be subsets of $G$ satisfying
$|A|+|B| > |G|.$ Here $|X|$ denotes the cardinality (the number of elements) of the set $X$.
Then prove that $G=AB$, where
$AB=\{ab \mid a\in A, b\in B\}.$

## Problem 488

Let $G$ be a finite group and let $S$ be a non-empty set.
Suppose that $G$ acts on $S$ freely and transitively.
Prove that $|G|=|S|$. That is, the number of elements in $G$ and $S$ are the same.

## Problem 455

Let $G$ be a finite group.
The centralizer of an element $a$ of $G$ is defined to be
$C_G(a)=\{g\in G \mid ga=ag\}.$

A conjugacy class is a set of the form
$\Cl(a)=\{bab^{-1} \mid b\in G\}$ for some $a\in G$.

(a) Prove that the centralizer of an element of $a$ in $G$ is a subgroup of the group $G$.

(b) Prove that the order (the number of elements) of every conjugacy class in $G$ divides the order of the group $G$.

## Problem 420

In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.

Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic to the cyclic group $Z_n=\Zmod{n}$ of order $n$.

## Problem 326

Prove that if $G$ is a finite group of even order, then the number of elements of $G$ of order $2$ is odd.

## Problem 302

Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by
$\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,$ where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring homomorphism, called the augmentation map and the kernel of $\epsilon$ is called the augmentation ideal.

(a) Prove that the augmentation ideal in the group ring $RG$ is generated by $\{g-e \mid g\in G\}$.

(b) Prove that if $G=\langle g\rangle$ is a finite cyclic group generated by $g$, then the augmentation ideal is generated by $g-e$.

## Problem 291

Let $G$ be a finite group. Let $a, b$ be elements of $G$.

Prove that the order of $ab$ is equal to the order of $ba$.
(Of course do not assume that $G$ is an abelian group.)

## Problem 278

Prove that any $p$-Sylow subgroup of a group $G$ of order $33$ is a normal subgroup of $G$.

## Problem 245

Let $p, q$ be prime numbers such that $p>q$.
If a group $G$ has order $pq$, then show the followings.

(a) The group $G$ has a normal Sylow $p$-subgroup.

(b) The group $G$ is solvable.

## Problem 219

Use Lagrange’s Theorem in the multiplicative group $(\Zmod{p})^{\times}$ to prove Fermat’s Little Theorem: if $p$ is a prime number then $a^p \equiv a \pmod p$ for all $a \in \Z$.

## Problem 160

Let $G$ be a finite group and let $H$ be a subset of $G$ such that for any $a,b \in H$, $ab\in H$.

Then show that $H$ is a subgroup of $G$.

## Problem 145

Let $G$ be a finite group of order $n$ and let $m$ be an integer that is relatively prime to $n=|G|$. Show that for any $a\in G$, there exists a unique element $b\in G$ such that
$b^m=a.$

## Problem 124

Let $p$ be a prime number.
Let $G$ be a non-abelian $p$-group.
Show that the index of the center of $G$ is divisible by $p^2$.

## Problem 122

Let $G$ be a finite group. Then show that $G$ has a composition series.

## Problem 118

Let $G$ be a finite group of order $18$. Show that the group $G$ is solvable.

## Problem 117

Let $G$ be a finite group and $P$ be a nontrivial Sylow subgroup of $G$.
Let $H$ be a subgroup of $G$ containing the normalizer $N_G(P)$ of $P$ in $G$.

Then show that $N_G(H)=H$.

## Problem 113

Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism.
The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation
$(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),$ where $a_i \in A, b_i \in B$ for $i=1, 2$.

Let $f: A \to A’$ and $g:B \to B’$ be group isomorphisms. Define $\phi’: B’\to \Aut(A’)$ by sending $b’ \in B’$ to $f\circ \phi(g^{-1}(b’))\circ f^{-1}$.

$\require{AMScd} \begin{CD} B @>{\phi}>> \Aut(A)\\ @A{g^{-1}}AA @VV{\sigma_f}V \\ B’ @>{\phi’}>> \Aut(A’) \end{CD}$ Here $\sigma_f:\Aut(A) \to \Aut(A’)$ is defined by $\alpha \in \Aut(A) \mapsto f\alpha f^{-1}\in \Aut(A’)$.
Then show that
$A \rtimes_{\phi} B \cong A’ \rtimes_{\phi’} B’.$

## Problem 112

Let $G$ be a simple group and let $X$ be a finite set.
Suppose $G$ acts nontrivially on $X$. That is, there exist $g\in G$ and $x \in X$ such that $g\cdot x \neq x$.
Then show that $G$ is a finite group and the order of $G$ divides $|X|!$.

## Problem 108

Let $\F_p$ be the finite field of $p$ elements, where $p$ is a prime number.
Let $G_n=\GL_n(\F_p)$ be the group of $n\times n$ invertible matrices with entries in the field $\F_p$. As usual in linear algebra, we may regard the elements of $G_n$ as linear transformations on $\F_p^n$, the $n$-dimensional vector space over $\F_p$. Therefore, $G_n$ acts on $\F_p^n$.

Let $e_n \in \F_p^n$ be the vector $(1,0, \dots,0)$.
(The so-called first standard basis vector in $\F_p^n$.)

Find the size of the $G_n$-orbit of $e_n$, and show that $\Stab_{G_n}(e_n)$ has order $|G_{n-1}|\cdot p^{n-1}$.

Conclude by induction that
$|G_n|=p^{n^2}\prod_{i=1}^{n} \left(1-\frac{1}{p^i} \right).$

## Problem 106

Let $G$ be a finite group of odd order. Assume that $x \in G$ is not the identity element. Show that $x$ is not conjugate to $x^{-1}$.