Let $G$ be an abelian group and let $H$ be the subset of $G$ consisting of all elements of $G$ of finite order. That is,
\[H=\{ a\in G \mid \text{the order of $a$ is finite}\}.\]

Let $G$ be an abelian group.
Let $a$ and $b$ be elements in $G$ of order $m$ and $n$, respectively.
Prove that there exists an element $c$ in $G$ such that the order of $c$ is the least common multiple of $m$ and $n$.

Also determine whether the statement is true if $G$ is a non-abelian group.

Let $G$ be a finite group and let $A, B$ be subsets of $G$ satisfying
\[|A|+|B| > |G|.\]
Here $|X|$ denotes the cardinality (the number of elements) of the set $X$.
Then prove that $G=AB$, where
\[AB=\{ab \mid a\in A, b\in B\}.\]

Let $G, H, K$ be groups. Let $f:G\to K$ be a group homomorphism and let $\pi:G\to H$ be a surjective group homomorphism such that the kernel of $\pi$ is included in the kernel of $f$: $\ker(\pi) \subset \ker(f)$.

Define a map $\tilde{f}:H\to K$ as follows.
For each $h\in H$, there exists $g\in G$ such that $\pi(g)=h$ since $\pi:G\to H$ is surjective.
Define $\tilde{f}:H\to K$ by $\tilde{f}(h)=f(g)$.

(a) Prove that the map $\tilde{f}:H\to K$ is well-defined.

(b) Prove that $\tilde{f}:H\to K$ is a group homomorphism.

Let $G$ be a finite group and let $S$ be a non-empty set.
Suppose that $G$ acts on $S$ freely and transitively.
Prove that $|G|=|S|$. That is, the number of elements in $G$ and $S$ are the same.

Let $G$ be a finite group of order $p^n$, where $p$ is a prime number and $n$ is a positive integer.
Suppose that $H$ is a subgroup of $G$ with index $[G:P]=p$.
Then prove that $H$ is a normal subgroup of $G$.

(Michigan State University, Abstract Algebra Qualifying Exam)

Give an example of two groups $G$ and $H$ and a subgroup $K$ of the direct product $G\times H$ such that $K$ cannot be written as $K=G_1\times H_1$, where $G_1$ and $H_1$ are subgroups of $G$ and $H$, respectively.

Prove that the symmetric group $S_n$, $n\geq 3$ is a semi-direct product of the alternating group $A_n$ and the subgroup $\langle(1,2) \rangle$ generated by the element $(1,2)$.

Let $G$ be a group. Let $H$ be a subgroup of $G$ and let $N$ be a normal subgroup of $G$.
The product of $H$ and $N$ is defined to be the subset
\[H\cdot N=\{hn\in G\mid h \in H, n\in N\}.\]
Prove that the product $H\cdot N$ is a subgroup of $G$.