Let $A$ and $B$ be $n\times n$ matrices and assume that they commute: $AB=BA$.
Then prove that the matrices $A$ and $B$ share at least one common eigenvector.

A square matrix $A$ is called nilpotent if some power of $A$ is the zero matrix.
Namely, $A$ is nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix.

Suppose that $A$ is a nilpotent matrix and let $B$ be an invertible matrix of the same size as $A$.
Is the matrix $B-A$ invertible? If so prove it. Otherwise, give a counterexample.

An $n\times n$ matrix $A$ is called nonsingular if the only vector $\mathbf{x}\in \R^n$ satisfying the equation $A\mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$.
Using the definition of a nonsingular matrix, prove the following statements.

(a) If $A$ and $B$ are $n\times n$ nonsingular matrix, then the product $AB$ is also nonsingular.

(b) Let $A$ and $B$ be $n\times n$ matrices and suppose that the product $AB$ is nonsingular. Then:

The matrix $B$ is nonsingular.

The matrix $A$ is nonsingular. (You may use the fact that a nonsingular matrix is invertible.)

For each of the following $3\times 3$ matrices $A$, determine whether $A$ is invertible and find the inverse $A^{-1}$ if exists by computing the augmented matrix $[A|I]$, where $I$ is the $3\times 3$ identity matrix.

An $n\times n$ matrix $A$ is said to be invertible if there exists an $n\times n$ matrix $B$ such that

$AB=I$, and

$BA=I$,

where $I$ is the $n\times n$ identity matrix.

If such a matrix $B$ exists, then it is known to be unique and called the inverse matrix of $A$, denoted by $A^{-1}$.

In this problem, we prove that if $B$ satisfies the first condition, then it automatically satisfies the second condition.
So if we know $AB=I$, then we can conclude that $B=A^{-1}$.

Let $A$ and $B$ be $n\times n$ matrices.
Suppose that we have $AB=I$, where $I$ is the $n \times n$ identity matrix.

The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be
\[C_{ij}=(-1)^{ij}\det(M_{ij}),\]
where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column.

Then consider the $n\times n$ matrix $C=(C_{ij})$, and define the $n\times n$ matrix $\Adj(A)=C^{\trans}$.
The matrix $\Adj(A)$ is called the adjoint matrix of $A$.

When $A$ is invertible, then its inverse can be obtained by the formula

\[A^{-1}=\frac{1}{\det(A)}\Adj(A).\]

For each of the following matrices, determine whether it is invertible, and if so, then find the invertible matrix using the above formula.

Let $A$ be an $n\times n$ invertible matrix. Then prove the transpose $A^{\trans}$ is also invertible and that the inverse matrix of the transpose $A^{\trans}$ is the transpose of the inverse matrix $A^{-1}$.
Namely, show that
\[(A^{\trans})^{-1}=(A^{-1})^{\trans}.\]

Let $A$ be an $n\times n$ complex matrix.
Let $S$ be an invertible matrix.

(a) If $SAS^{-1}=\lambda A$ for some complex number $\lambda$, then prove that either $\lambda^n=1$ or $A$ is a singular matrix.

(b) If $n$ is odd and $SAS^{-1}=-A$, then prove that $0$ is an eigenvalue of $A$.

(c) Suppose that all the eigenvalues of $A$ are integers and $\det(A) > 0$. If $n$ is odd and $SAS^{-1}=A^{-1}$, then prove that $1$ is an eigenvalue of $A$.

Determine whether each of the following statements is True or False.

(a) If $A$ and $B$ are $n \times n$ matrices, and $P$ is an invertible $n \times n$ matrix such that $A=PBP^{-1}$, then $\det(A)=\det(B)$.

(b) If the characteristic polynomial of an $n \times n$ matrix $A$ is
\[p(\lambda)=(\lambda-1)^n+2,\]
then $A$ is invertible.

(c) If $A^2$ is an invertible $n\times n$ matrix, then $A^3$ is also invertible.

(d) If $A$ is a $3\times 3$ matrix such that $\det(A)=7$, then $\det(2A^{\trans}A^{-1})=2$.

(e) If $\mathbf{v}$ is an eigenvector of an $n \times n$ matrix $A$ with corresponding eigenvalue $\lambda_1$, and if $\mathbf{w}$ is an eigenvector of $A$ with corresponding eigenvalue $\lambda_2$, then $\mathbf{v}+\mathbf{w}$ is an eigenvector of $A$ with corresponding eigenvalue $\lambda_1+\lambda_2$.

(Stanford University, Linear Algebra Exam Problem)

Determine all $2\times 2$ matrices $A$ such that $A$ has eigenvalues $2$ and $-1$ with corresponding eigenvectors
\[\begin{bmatrix}
1 \\
0
\end{bmatrix} \text{ and } \begin{bmatrix}
2 \\
1
\end{bmatrix},\]
respectively.

Determine the values of $x$ so that the matrix
\[A=\begin{bmatrix}
1 & 1 & x \\
1 &x &x \\
x & x & x
\end{bmatrix}\]
is invertible.
For those values of $x$, find the inverse matrix $A^{-1}$.

(a) Let $A$ be a $6\times 6$ matrix and suppose that $A$ can be written as
\[A=BC,\]
where $B$ is a $6\times 5$ matrix and $C$ is a $5\times 6$ matrix.

Prove that the matrix $A$ cannot be invertible.

(b) Let $A$ be a $2\times 2$ matrix and suppose that $A$ can be written as
\[A=BC,\]
where $B$ is a $ 2\times 3$ matrix and $C$ is a $3\times 2$ matrix.