Tagged: linearly independent

Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$

Problem 612

Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$.

(a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ is a basis for $W$.

(b) Prove that the set $\{\sin^2(x)-\cos^2(x), 1\}$ is a basis for $W$.

 
Read solution

LoadingAdd to solve later

Are the Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$ Linearly Independent?

Problem 603

Let $C[-2\pi, 2\pi]$ be the vector space of all continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the functions \[f(x)=\sin^2(x) \text{ and } g(x)=\cos^2(x)\] in $C[-2\pi, 2\pi]$.

Prove or disprove that the functions $f(x)$ and $g(x)$ are linearly independent.

(The Ohio State University, Linear Algebra Midterm)
 
Read solution

LoadingAdd to solve later

Exponential Functions Form a Basis of a Vector Space

Problem 590

Let $C[-1, 1]$ be the vector space over $\R$ of all continuous functions defined on the interval $[-1, 1]$. Let
\[V:=\{f(x)\in C[-1,1] \mid f(x)=a e^x+b e^{2x}+c e^{3x}, a, b, c\in \R\}\] be a subset in $C[-1, 1]$.

(a) Prove that $V$ is a subspace of $C[-1, 1]$.

(b) Prove that the set $B=\{e^x, e^{2x}, e^{3x}\}$ is a basis of $V$.

(c) Prove that
\[B’=\{e^x-2e^{3x}, e^x+e^{2x}+2e^{3x}, 3e^{2x}+e^{3x}\}\] is a basis for $V$.

 
Read solution

LoadingAdd to solve later

Determine Whether Each Set is a Basis for $\R^3$

Problem 579

Determine whether each of the following sets is a basis for $\R^3$.

(a) $S=\left\{\, \begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
-1
\end{bmatrix}, \begin{bmatrix}
-2 \\
1 \\
4
\end{bmatrix} \,\right\}$

(b) $S=\left\{\, \begin{bmatrix}
1 \\
4 \\
7
\end{bmatrix}, \begin{bmatrix}
2 \\
5 \\
8
\end{bmatrix}, \begin{bmatrix}
3 \\
6 \\
9
\end{bmatrix} \,\right\}$

(c) $S=\left\{\, \begin{bmatrix}
1 \\
1 \\
2
\end{bmatrix}, \begin{bmatrix}
0 \\
1 \\
7
\end{bmatrix} \,\right\}$

(d) $S=\left\{\, \begin{bmatrix}
1 \\
2 \\
5
\end{bmatrix}, \begin{bmatrix}
7 \\
4 \\
0
\end{bmatrix}, \begin{bmatrix}
3 \\
8 \\
6
\end{bmatrix}, \begin{bmatrix}
-1 \\
9 \\
10
\end{bmatrix} \,\right\}$

 
Read solution

LoadingAdd to solve later

Find the Dimension of the Subspace of Vectors Perpendicular to Given Vectors

Problem 578

Let $V$ be a subset of $\R^4$ consisting of vectors that are perpendicular to vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$, where
\[\mathbf{a}=\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix}, \quad \mathbf{b}=\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}, \quad \mathbf{c}=\begin{bmatrix}
0 \\
1 \\
-1 \\
0
\end{bmatrix}.\]

Namely,
\[V=\{\mathbf{x}\in \R^4 \mid \mathbf{a}^{\trans}\mathbf{x}=0, \mathbf{b}^{\trans}\mathbf{x}=0, \text{ and } \mathbf{c}^{\trans}\mathbf{x}=0\}.\]

(a) Prove that $V$ is a subspace of $\R^4$.

(b) Find a basis of $V$.

(c) Determine the dimension of $V$.

 
Read solution

LoadingAdd to solve later

Three Linearly Independent Vectors in $\R^3$ Form a Basis. Three Vectors Spanning $\R^3$ Form a Basis.

Problem 574

Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a set of three-dimensional vectors in $\R^3$.

(a) Prove that if the set $B$ is linearly independent, then $B$ is a basis of the vector space $\R^3$.

(b) Prove that if the set $B$ spans $\R^3$, then $B$ is a basis of $\R^3$.

 
Read solution

LoadingAdd to solve later

Determine a Condition on $a, b$ so that Vectors are Linearly Dependent


Problem 563

Let
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
1 \\
a \\
5
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
0 \\
4 \\
b
\end{bmatrix}\] be vectors in $\R^3$.

Determine a condition on the scalars $a, b$ so that the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.

 
Read solution

LoadingAdd to solve later

The Matrix $[A_1, \dots, A_{n-1}, A\mathbf{b}]$ is Always Singular, Where $A=[A_1,\dots, A_{n-1}]$ and $\mathbf{b}\in \R^{n-1}$.

Problem 560

Let $A$ be an $n\times (n-1)$ matrix and let $\mathbf{b}$ be an $(n-1)$-dimensional vector.
Then the product $A\mathbf{b}$ is an $n$-dimensional vector.
Set the $n\times n$ matrix $B=[A_1, A_2, \dots, A_{n-1}, A\mathbf{b}]$, where $A_i$ is the $i$-th column vector of $A$.

Prove that $B$ is a singular matrix for any choice of $\mathbf{b}$.

 
Read solution

LoadingAdd to solve later

10 True of False Problems about Nonsingular / Invertible Matrices

Problem 500

10 questions about nonsingular matrices, invertible matrices, and linearly independent vectors.

The quiz is designed to test your understanding of the basic properties of these topics.

You can take the quiz as many times as you like.

The solutions will be given after completing all the 10 problems.
Click the View question button to see the solutions.

 
Read solution

LoadingAdd to solve later

Are Linear Transformations of Derivatives and Integrations Linearly Independent?

Problem 463

Let $W=C^{\infty}(\R)$ be the vector space of all $C^{\infty}$ real-valued functions (smooth function, differentiable for all degrees of differentiation).
Let $V$ be the vector space of all linear transformations from $W$ to $W$.
The addition and the scalar multiplication of $V$ are given by those of linear transformations.

Let $T_1, T_2, T_3$ be the elements in $V$ defined by
\begin{align*}
T_1\left(\, f(x) \,\right)&=\frac{\mathrm{d}}{\mathrm{d}x}f(x)\\[6pt] T_2\left(\, f(x) \,\right)&=\frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x)\\[6pt] T_3\left(\, f(x) \,\right)&=\int_{0}^x \! f(t)\,\mathrm{d}t.
\end{align*}
Then determine whether the set $\{T_1, T_2, T_3\}$ are linearly independent or linearly dependent.

 
Read solution

LoadingAdd to solve later

Subspace Spanned By Cosine and Sine Functions

Problem 435

Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$.
Define the map $f:\R^2 \to \calF[0, 2\pi]$ by
\[\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta \sin x.\] We put
\[V:=\im f=\{\alpha \cos x + \beta \sin x \in \calF[0, 2\pi] \mid \alpha, \beta \in \R\}.\]

(a) Prove that the map $f$ is a linear transformation.

(b) Prove that the set $\{\cos x, \sin x\}$ is a basis of the vector space $V$.

(c) Prove that the kernel is trivial, that is, $\ker f=\{\mathbf{0}\}$.
(This yields an isomorphism of $\R^2$ and $V$.)

(d) Define a map $g:V \to V$ by
\[g(\alpha \cos x + \beta \sin x):=\frac{d}{dx}(\alpha \cos x+ \beta \sin x)=\beta \cos x -\alpha \sin x.\] Prove that the map $g$ is a linear transformation.

(e) Find the matrix representation of the linear transformation $g$ with respect to the basis $\{\cos x, \sin x\}$.

(Kyoto University, Linear Algebra exam problem)

 
Read solution

LoadingAdd to solve later

If Two Matrices Have the Same Eigenvalues with Linearly Independent Eigenvectors, then They Are Equal

Problem 424

Let $A$ and $B$ be $n\times n$ matrices.
Suppose that $A$ and $B$ have the same eigenvalues $\lambda_1, \dots, \lambda_n$ with the same corresponding eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$.
Prove that if the eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly independent, then $A=B$.

 
Read solution

LoadingAdd to solve later

Linearly Dependent Module Elements / Module Homomorphism and Linearly Independency

Problem 415

(a) Let $R$ be a commutative ring. If we regard $R$ as a left $R$-module, then prove that any two distinct elements of the module $R$ are linearly dependent.

(b) Let $f: M\to M’$ be a left $R$-module homomorphism. Let $\{x_1, \dots, x_n\}$ be a subset in $M$. Prove that if the set $\{f(x_1), \dots, f(x_n)\}$ is linearly independent, then the set $\{x_1, \dots, x_n\}$ is also linearly independent.
 
Read solution

LoadingAdd to solve later

Determinant of a General Circulant Matrix

Problem 374

Let \[A=\begin{bmatrix}
a_0 & a_1 & \dots & a_{n-2} &a_{n-1} \\
a_{n-1} & a_0 & \dots & a_{n-3} & a_{n-2} \\
a_{n-2} & a_{n-1} & \dots & a_{n-4} & a_{n-3} \\
\vdots & \vdots & \dots & \vdots & \vdots \\
a_{2} & a_3 & \dots & a_{0} & a_{1}\\
a_{1} & a_2 & \dots & a_{n-1} & a_{0}
\end{bmatrix}\] be a complex $n \times n$ matrix.
Such a matrix is called circulant matrix.
Then prove that the determinant of the circulant matrix $A$ is given by
\[\det(A)=\prod_{k=0}^{n-1}(a_0+a_1\zeta^k+a_2 \zeta^{2k}+\cdots+a_{n-1}\zeta^{k(n-1)}),\] where $\zeta=e^{2 \pi i/n}$ is a primitive $n$-th root of unity.

 
Read solution

LoadingAdd to solve later

Determine Whether Trigonometry Functions $\sin^2(x), \cos^2(x), 1$ are Linearly Independent or Dependent

Problem 365

Let $f(x)=\sin^2(x)$, $g(x)=\cos^2(x)$, and $h(x)=1$. These are vectors in $C[-1, 1]$.
Determine whether the set $\{f(x), \, g(x), \, h(x)\}$ is linearly dependent or linearly independent.

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Coordinate Vectors and Dimension of Subspaces (Span)

Problem 350

Let $V$ be a vector space over $\R$ and let $B$ be a basis of $V$.
Let $S=\{v_1, v_2, v_3\}$ be a set of vectors in $V$. If the coordinate vectors of these vectors with respect to the basis $B$ is given as follows, then find the dimension of $V$ and the dimension of the span of $S$.
\[[v_1]_B=\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}, [v_2]_B=\begin{bmatrix}
0 \\
1 \\
0 \\
0
\end{bmatrix}, [v_3]_B=\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}.\]

 
Read solution

LoadingAdd to solve later

Condition that a Matrix is Similar to the Companion Matrix of its Characteristic Polynomial

Problem 348

Let $A$ be an $n\times n$ complex matrix.
Let $p(x)=\det(xI-A)$ be the characteristic polynomial of $A$ and write it as
\[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\] where $a_i$ are real numbers.

Let $C$ be the companion matrix of the polynomial $p(x)$ given by
\[C=\begin{bmatrix}
0 & 0 & \dots & 0 &-a_0 \\
1 & 0 & \dots & 0 & -a_1 \\
0 & 1 & \dots & 0 & -a_2 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & 1 & -a_{n-1}
\end{bmatrix}=
[\mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_n, -\mathbf{a}],\] where $\mathbf{e}_i$ is the unit vector in $\C^n$ whose $i$-th entry is $1$ and zero elsewhere, and the vector $\mathbf{a}$ is defined by
\[\mathbf{a}=\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix}.\]

Then prove that the following two statements are equivalent.

  1. There exists a vector $\mathbf{v}\in \C^n$ such that
    \[\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \dots, A^{n-1}\mathbf{v}\] form a basis of $\C^n$.
  2. There exists an invertible matrix $S$ such that $S^{-1}AS=C$.
    (Namely, $A$ is similar to the companion matrix of its characteristic polynomial.)

 
Read solution

LoadingAdd to solve later