Tagged: nilpotent matrix

Is the Sum of a Nilpotent Matrix and an Invertible Matrix Invertible?

Problem 582

A square matrix $A$ is called nilpotent if some power of $A$ is the zero matrix.
Namely, $A$ is nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix.

Suppose that $A$ is a nilpotent matrix and let $B$ be an invertible matrix of the same size as $A$.
Is the matrix $B-A$ invertible? If so prove it. Otherwise, give a counterexample.

 
Read solution

LoadingAdd to solve later

Differentiating Linear Transformation is Nilpotent

Problem 453

Let $P_n$ be the vector space of all polynomials with real coefficients of degree $n$ or less.
Consider the differentiation linear transformation $T: P_n\to P_n$ defined by
\[T\left(\, f(x) \,\right)=\frac{d}{dx}f(x).\]

(a) Consider the case $n=2$. Let $B=\{1, x, x^2\}$ be a basis of $P_2$. Find the matrix representation $A$ of the linear transformation $T$ with respect to the basis $B$.

(b) Compute $A^3$, where $A$ is the matrix obtained in part (a).

(c) If you computed $A^3$ in part (b) directly, then is there any theoretical explanation of your result?

(d) Now we consider the general case. Let $B$ be any basis of the vector space of $P_n$ and let $A$ be the matrix representation of the linear transformation $T$ with respect to the basis $B$.
Prove that without any calculation that the matrix $A$ is nilpotent.

 
Read solution

LoadingAdd to solve later

Normal Nilpotent Matrix is Zero Matrix

Problem 336

A complex square ($n\times n$) matrix $A$ is called normal if
\[A^* A=A A^*,\] where $A^*$ denotes the conjugate transpose of $A$, that is $A^*=\bar{A}^{\trans}$.
A matrix $A$ is said to be nilpotent if there exists a positive integer $k$ such that $A^k$ is the zero matrix.

(a) Prove that if $A$ is both normal and nilpotent, then $A$ is the zero matrix.
You may use the fact that every normal matrix is diagonalizable.

(b) Give a proof of (a) without referring to eigenvalues and diagonalization.

(c) Let $A, B$ be $n\times n$ complex matrices. Prove that if $A$ is normal and $B$ is nilpotent such that $A+B=I$, then $A=I$, where $I$ is the $n\times n$ identity matrix.

 
Read solution

LoadingAdd to solve later

Is the Product of a Nilpotent Matrix and an Invertible Matrix Nilpotent?

Problem 77

A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix.

(a) If $A$ is a nilpotent $n \times n$ matrix and $B$ is an $n\times n$ matrix such that $AB=BA$. Show that the product $AB$ is nilpotent.

(b) Let $P$ be an invertible $n \times n$ matrix and let $N$ be a nilpotent $n\times n$ matrix. Is the product $PN$ nilpotent? If so, prove it. If not, give a counterexample.

 

Read solution

LoadingAdd to solve later