Tagged: null space

Find the Dimension of the Subspace of Vectors Perpendicular to Given Vectors

Problem 578

Let $V$ be a subset of $\R^4$ consisting of vectors that are perpendicular to vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$, where
\[\mathbf{a}=\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix}, \quad \mathbf{b}=\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}, \quad \mathbf{c}=\begin{bmatrix}
0 \\
1 \\
-1 \\
0
\end{bmatrix}.\]

Namely,
\[V=\{\mathbf{x}\in \R^4 \mid \mathbf{a}^{\trans}\mathbf{x}=0, \mathbf{b}^{\trans}\mathbf{x}=0, \text{ and } \mathbf{c}^{\trans}\mathbf{x}=0\}.\]

(a) Prove that $V$ is a subspace of $\R^4$.

(b) Find a basis of $V$.

(c) Determine the dimension of $V$.

 
Read solution

LoadingAdd to solve later

Determine Whether Given Subsets in $\R^4$ are Subspaces or Not

Problem 480

(a) Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}$ satisfying
\[2x+4y+3z+7w+1=0.\] Determine whether $S$ is a subspace of $\R^4$. If so prove it. If not, explain why it is not a subspace.

(b) Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}$ satisfying
\[2x+4y+3z+7w=0.\] Determine whether $S$ is a subspace of $\R^4$. If so prove it. If not, explain why it is not a subspace.

(These two problems look similar but note that the equations are different.)

(The Ohio State University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Null Space, Nullity, Range, Rank of a Projection Linear Transformation

Problem 450

Let $\mathbf{u}=\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}$ and $T:\R^3 \to \R^3$ be the linear transformation
\[T(\mathbf{x})=\proj_{\mathbf{u}}\mathbf{x}=\left(\, \frac{\mathbf{u}\cdot \mathbf{x}}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}.\]

(a) Calculate the null space $\calN(T)$, a basis for $\calN(T)$ and nullity of $T$.

(b) Only by using part (a) and no other calculations, find $\det(A)$, where $A$ is the matrix representation of $T$ with respect to the standard basis of $\R^3$.

(c) Calculate the range $\calR(T)$, a basis for $\calR(T)$ and the rank of $T$.

(d) Calculate the matrix $A$ representing $T$ with respect to the standard basis for $\R^3$.

(e) Let
\[B=\left\{\, \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \,\right\}\] be a basis for $\R^3$.
Calculate the coordinates of $\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}$ with respect to $B$.

(The Ohio State University, Linear Algebra Exam Problem)

 
Read solution

LoadingAdd to solve later

Subspace Spanned By Cosine and Sine Functions

Problem 435

Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$.
Define the map $f:\R^2 \to \calF[0, 2\pi]$ by
\[\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta \sin x.\] We put
\[V:=\im f=\{\alpha \cos x + \beta \sin x \in \calF[0, 2\pi] \mid \alpha, \beta \in \R\}.\]

(a) Prove that the map $f$ is a linear transformation.

(b) Prove that the set $\{\cos x, \sin x\}$ is a basis of the vector space $V$.

(c) Prove that the kernel is trivial, that is, $\ker f=\{\mathbf{0}\}$.
(This yields an isomorphism of $\R^2$ and $V$.)

(d) Define a map $g:V \to V$ by
\[g(\alpha \cos x + \beta \sin x):=\frac{d}{dx}(\alpha \cos x+ \beta \sin x)=\beta \cos x -\alpha \sin x.\] Prove that the map $g$ is a linear transformation.

(e) Find the matrix representation of the linear transformation $g$ with respect to the basis $\{\cos x, \sin x\}$.

(Kyoto University, Linear Algebra exam problem)

 
Read solution

LoadingAdd to solve later

Find All the Eigenvalues and Eigenvectors of the 6 by 6 Matrix

Problem 400

Find all the eigenvalues and eigenvectors of the matrix
\[A=\begin{bmatrix}
10001 & 3 & 5 & 7 &9 & 11 \\
1 & 10003 & 5 & 7 & 9 & 11 \\
1 & 3 & 10005 & 7 & 9 & 11 \\
1 & 3 & 5 & 10007 & 9 & 11 \\
1 &3 & 5 & 7 & 10009 & 11 \\
1 &3 & 5 & 7 & 9 & 10011
\end{bmatrix}.\]

(MIT, Linear Algebra Homework Problem)
 
Read solution

LoadingAdd to solve later

If Two Vectors Satisfy $A\mathbf{x}=0$ then Find Another Solution

Problem 395

Suppose that the vectors
\[\mathbf{v}_1=\begin{bmatrix}
-2 \\
1 \\
0 \\
0 \\
0
\end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix}
-4 \\
0 \\
-3 \\
-2 \\
1
\end{bmatrix}\] are a basis vectors for the null space of a $4\times 5$ matrix $A$. Find a vector $\mathbf{x}$ such that
\[\mathbf{x}\neq0, \quad \mathbf{x}\neq \mathbf{v}_1, \quad \mathbf{x}\neq \mathbf{v}_2,\] and
\[A\mathbf{x}=\mathbf{0}.\]

(Stanford University, Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Determine Dimensions of Eigenspaces From Characteristic Polynomial of Diagonalizable Matrix

Problem 384

Let $A$ be an $n\times n$ matrix with the characteristic polynomial
\[p(t)=t^3(t-1)^2(t-2)^5(t+2)^4.\] Assume that the matrix $A$ is diagonalizable.

(a) Find the size of the matrix $A$.

(b) Find the dimension of the eigenspace $E_2$ corresponding to the eigenvalue $\lambda=2$.

(c) Find the nullity of $A$.

(The Ohio State University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Quiz 12. Find Eigenvalues and their Algebraic and Geometric Multiplicities

Problem 376

(a) Let
\[A=\begin{bmatrix}
0 & 0 & 0 & 0 \\
1 &1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}.\] Find the eigenvalues of the matrix $A$. Also give the algebraic multiplicity of each eigenvalue.

(b) Let
\[A=\begin{bmatrix}
0 & 0 & 0 & 0 \\
1 &1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}.\] One of the eigenvalues of the matrix $A$ is $\lambda=0$. Find the geometric multiplicity of the eigenvalue $\lambda=0$.

 
Read solution

LoadingAdd to solve later

Hyperplane in $n$-Dimensional Space Through Origin is a Subspace

Problem 352

A hyperplane in $n$-dimensional vector space $\R^n$ is defined to be the set of vectors
\[\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}\in \R^n\] satisfying the linear equation of the form
\[a_1x_1+a_2x_2+\cdots+a_nx_n=b,\] where $a_1, a_2, \dots, a_n$ (at least one of $a_1, a_2, \dots, a_n$ is nonzero) and $b$ are real numbers.
Here at least one of $a_1, a_2, \dots, a_n$ is nonzero.

Consider the hyperplane $P$ in $\R^n$ described by the linear equation
\[a_1x_1+a_2x_2+\cdots+a_nx_n=0,\] where $a_1, a_2, \dots, a_n$ are some fixed real numbers and not all of these are zero.
(The constant term $b$ is zero.)

Then prove that the hyperplane $P$ is a subspace of $R^{n}$ of dimension $n-1$.

 
Read solution

LoadingAdd to solve later

Quiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null Space

Problem 313

(a) Let $A=\begin{bmatrix}
1 & 2 & 1 \\
3 &6 &4
\end{bmatrix}$ and let
\[\mathbf{a}=\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix}
1 \\
1
\end{bmatrix}.\] For each of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, determine whether the vector is in the null space $\calN(A)$. Do the same for the range $\calR(A)$.

(b) Find a basis of the null space of the matrix $B=\begin{bmatrix}
1 & 1 & 2 \\
-2 &-2 &-4
\end{bmatrix}$.

 
Read solution

LoadingAdd to solve later