Tagged: rank

Null Space, Nullity, Range, Rank of a Projection Linear Transformation

Problem 450

Let $\mathbf{u}=\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}$ and $T:\R^3 \to \R^3$ be the linear transformation
\[T(\mathbf{x})=\proj_{\mathbf{u}}\mathbf{x}=\left(\, \frac{\mathbf{u}\cdot \mathbf{x}}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}.\]

(a) Calculate the null space $\calN(T)$, a basis for $\calN(T)$ and nullity of $T$.

(b) Only by using part (a) and no other calculations, find $\det(A)$, where $A$ is the matrix representation of $T$ with respect to the standard basis of $\R^3$.

(c) Calculate the range $\calR(T)$, a basis for $\calR(T)$ and the rank of $T$.

(d) Calculate the matrix $A$ representing $T$ with respect to the standard basis for $\R^3$.

(e) Let
\[B=\left\{\, \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \,\right\}\] be a basis for $\R^3$.
Calculate the coordinates of $\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}$ with respect to $B$.

(The Ohio State University, Linear Algebra Exam Problem)

 

Read solution

FavoriteLoadingAdd to solve later

Quiz 12. Find Eigenvalues and their Algebraic and Geometric Multiplicities

Problem 376

(a) Let
\[A=\begin{bmatrix}
0 & 0 & 0 & 0 \\
1 &1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}.\] Find the eigenvalues of the matrix $A$. Also give the algebraic multiplicity of each eigenvalue.

(b) Let
\[A=\begin{bmatrix}
0 & 0 & 0 & 0 \\
1 &1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}.\] One of the eigenvalues of the matrix $A$ is $\lambda=0$. Find the geometric multiplicity of the eigenvalue $\lambda=0$.

 

Read solution

FavoriteLoadingAdd to solve later

Find Matrix Representation of Linear Transformation From $\R^2$ to $\R^2$

Problem 370

Let $T: \R^2 \to \R^2$ be a linear transformation such that
\[T\left(\, \begin{bmatrix}
1 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
4 \\
1
\end{bmatrix}, T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
3 \\
2
\end{bmatrix}.\] Then find the matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for every $\mathbf{x}\in \R^2$, and find the rank and nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)
 

Read solution

FavoriteLoadingAdd to solve later

Rank and Nullity of Linear Transformation From $\R^3$ to $\R^2$

Problem 369

Let $T:\R^3 \to \R^2$ be a linear transformation such that
\[ T(\mathbf{e}_1)=\begin{bmatrix}
1 \\
0
\end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix}
0 \\
1
\end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix}
1 \\
0
\end{bmatrix},\] where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are the standard basis of $\R^3$.
Then find the rank and the nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)
 

Read solution

FavoriteLoadingAdd to solve later

Linear Transformation to 1-Dimensional Vector Space and Its Kernel

Problem 329

Let $n$ be a positive integer. Let $T:\R^n \to \R$ be a non-zero linear transformation.
Prove the followings.

(a) The nullity of $T$ is $n-1$. That is, the dimension of the kernel of $T$ is $n-1$.
(The kernel of $T$ is also called the null space of $T$.)

(b) Let $B=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}\}$ be a basis of the kernel $\ker(T)$ of $T$.
Let $\mathbf{w}$ be the $n$-dimensional vector that is not in $\ker(T)$. Then
\[B’=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}, \mathbf{w}\}\] is a basis of $\R^n$.

(c) Each vector $\mathbf{u}\in \R^n$ can be expressed as
\[\mathbf{u}=\mathbf{v}+\frac{T(\mathbf{u})}{T(\mathbf{w})}\mathbf{w}\] for some vector $\mathbf{v}\in \ker(T)$.

 

Read solution

FavoriteLoadingAdd to solve later

Linear Transformation, Basis For the Range, Rank, and Nullity, Not Injective

Problem 276

Let $V$ be the vector space of all $2\times 2$ real matrices and let $P_3$ be the vector space of all polynomials of degree $3$ or less with real coefficients.
Let $T: P_3 \to V$ be the linear transformation defined by
\[T(a_0+a_1x+a_2x^2+a_3x^3)=\begin{bmatrix}
a_0+a_2 & -a_0+a_3\\
a_1-a_2 & -a_1-a_3
\end{bmatrix}\] for any polynomial $a_0+a_1x+a_2x^2+a_3 \in P_3$.
Find a basis for the range of $T$, $\calR(T)$, and determine the rank of $T$, $\rk(T)$, and the nullity of $T$, $\nullity(T)$.
Also, prove that $T$ is not injective.

 

Read solution

FavoriteLoadingAdd to solve later

Given Graphs of Characteristic Polynomial of Diagonalizable Matrices, Determine the Rank of Matrices

Problem 217

Let $A, B, C$ are $2\times 2$ diagonalizable matrices.

The graphs of characteristic polynomials of $A, B, C$ are shown below. The red graph is for $A$, blue one for $B$, and green one for $C$.

From this information, determine the rank of the matrices $A, B,$ and $C$.

Graphs of characteristic polynomials

Graphs of characteristic polynomials

 

Read solution

FavoriteLoadingAdd to solve later

A Matrix Representation of a Linear Transformation and Related Subspaces

Problem 164

Let $T:\R^4 \to \R^3$ be a linear transformation defined by
\[ T\left (\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} \,\right) = \begin{bmatrix}
x_1+2x_2+3x_3-x_4 \\
3x_1+5x_2+8x_3-2x_4 \\
x_1+x_2+2x_3
\end{bmatrix}.\]

(a) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$.

(b) Find a basis for the null space of $T$.

(c) Find the rank of the linear transformation $T$.

(The Ohio State University linear algebra exam problem.)
 

Read solution

FavoriteLoadingAdd to solve later

Range, Null Space, Rank, and Nullity of a Linear Transformation from $\R^2$ to $\R^3$

Problem 154

Define the map $T:\R^2 \to \R^3$ by $T \left ( \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}\right )=\begin{bmatrix}
x_1-x_2 \\
x_1+x_2 \\
x_2
\end{bmatrix}$.

(a) Show that $T$ is a linear transformation.

(b) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for each $\mathbf{x} \in \R^2$.

(c) Describe the null space (kernel) and the range of $T$ and give the rank and the nullity of $T$.

 

Read solution

FavoriteLoadingAdd to solve later