## The Normalizer of a Proper Subgroup of a Nilpotent Group is Strictly Bigger

## Problem 523

Let $G$ be a nilpotent group and let $H$ be a proper subgroup of $G$.

Then prove that $H \subsetneq N_G(H)$, where $N_G(H)$ is the normalizer of $H$ in $G$.

Add to solve later