Tagged: vector space

Find a Basis of the Subspace Spanned by Four Polynomials of Degree 3 or Less

Problem 607

Let $\calP_3$ be the vector space of all polynomials of degree $3$ or less.
Let
\[S=\{p_1(x), p_2(x), p_3(x), p_4(x)\},\] where
\begin{align*}
p_1(x)&=1+3x+2x^2-x^3 & p_2(x)&=x+x^3\\
p_3(x)&=x+x^2-x^3 & p_4(x)&=3+8x+8x^3.
\end{align*}

(a) Find a basis $Q$ of the span $\Span(S)$ consisting of polynomials in $S$.

(b) For each polynomial in $S$ that is not in $Q$, find the coordinate vector with respect to the basis $Q$.

(The Ohio State University, Linear Algebra Midterm)
 
Read solution

LoadingAdd to solve later

Determine the Dimension of a Mysterious Vector Space From Coordinate Vectors

Problem 606

Let $V$ be a vector space and $B$ be a basis for $V$.
Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ be vectors in $V$.
Suppose that $A$ is the matrix whose columns are the coordinate vectors of $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ with respect to the basis $B$.

After applying the elementary row operations to $A$, we obtain the following matrix in reduced row echelon form
\[\begin{bmatrix}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}.\]

(a) What is the dimension of $V$?

(b) What is the dimension of $\Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5\}$?

(The Ohio State University, Linear Algebra Midterm)
 
Read solution

LoadingAdd to solve later

Vector Space of 2 by 2 Traceless Matrices

Problem 601

Let $V$ be the vector space of all $2\times 2$ matrices whose entries are real numbers.
Let
\[W=\left\{\, A\in V \quad \middle | \quad A=\begin{bmatrix}
a & b\\
c& -a
\end{bmatrix} \text{ for any } a, b, c\in \R \,\right\}.\]

(a) Show that $W$ is a subspace of $V$.

(b) Find a basis of $W$.

(c) Find the dimension of $W$.

(The Ohio State University, Linear Algebra Midterm)
 
Read solution

LoadingAdd to solve later

Exponential Functions Form a Basis of a Vector Space

Problem 590

Let $C[-1, 1]$ be the vector space over $\R$ of all continuous functions defined on the interval $[-1, 1]$. Let
\[V:=\{f(x)\in C[-1,1] \mid f(x)=a e^x+b e^{2x}+c e^{3x}, a, b, c\in \R\}\] be a subset in $C[-1, 1]$.

(a) Prove that $V$ is a subspace of $C[-1, 1]$.

(b) Prove that the set $B=\{e^x, e^{2x}, e^{3x}\}$ is a basis of $V$.

(c) Prove that
\[B’=\{e^x-2e^{3x}, e^x+e^{2x}+2e^{3x}, 3e^{2x}+e^{3x}\}\] is a basis for $V$.

 
Read solution

LoadingAdd to solve later

Use Coordinate Vectors to Show a Set is a Basis for the Vector Space of Polynomials of Degree 2 or Less

Problem 588

Let $P_2$ be the vector space over $\R$ of all polynomials of degree $2$ or less.
Let $S=\{p_1(x), p_2(x), p_3(x)\}$, where
\[p_1(x)=x^2+1, \quad p_2(x)=6x^2+x+2, \quad p_3(x)=3x^2+x.\]

(a) Use the basis $B=\{x^2, x, 1\}$ of $P_2$ to prove that the set $S$ is a basis for $P_2$.

(b) Find the coordinate vector of $p(x)=x^2+2x+3\in P_2$ with respect to the basis $S$.

 
Read solution

LoadingAdd to solve later

The Subspace of Linear Combinations whose Sums of Coefficients are zero

Problem 581

Let $V$ be a vector space over a scalar field $K$.
Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in $V$ and consider the subset
\[W=\{a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k \mid a_1, a_2, \dots, a_k \in K \text{ and } a_1+a_2+\cdots+a_k=0\}.\] So each element of $W$ is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ such that the sum of the coefficients is zero.

Prove that $W$ is a subspace of $V$.

 
Read solution

LoadingAdd to solve later

Determine Whether Each Set is a Basis for $\R^3$

Problem 579

Determine whether each of the following sets is a basis for $\R^3$.

(a) $S=\left\{\, \begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
-1
\end{bmatrix}, \begin{bmatrix}
-2 \\
1 \\
4
\end{bmatrix} \,\right\}$

(b) $S=\left\{\, \begin{bmatrix}
1 \\
4 \\
7
\end{bmatrix}, \begin{bmatrix}
2 \\
5 \\
8
\end{bmatrix}, \begin{bmatrix}
3 \\
6 \\
9
\end{bmatrix} \,\right\}$

(c) $S=\left\{\, \begin{bmatrix}
1 \\
1 \\
2
\end{bmatrix}, \begin{bmatrix}
0 \\
1 \\
7
\end{bmatrix} \,\right\}$

(d) $S=\left\{\, \begin{bmatrix}
1 \\
2 \\
5
\end{bmatrix}, \begin{bmatrix}
7 \\
4 \\
0
\end{bmatrix}, \begin{bmatrix}
3 \\
8 \\
6
\end{bmatrix}, \begin{bmatrix}
-1 \\
9 \\
10
\end{bmatrix} \,\right\}$

 
Read solution

LoadingAdd to solve later

Find the Dimension of the Subspace of Vectors Perpendicular to Given Vectors

Problem 578

Let $V$ be a subset of $\R^4$ consisting of vectors that are perpendicular to vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$, where
\[\mathbf{a}=\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix}, \quad \mathbf{b}=\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}, \quad \mathbf{c}=\begin{bmatrix}
0 \\
1 \\
-1 \\
0
\end{bmatrix}.\]

Namely,
\[V=\{\mathbf{x}\in \R^4 \mid \mathbf{a}^{\trans}\mathbf{x}=0, \mathbf{b}^{\trans}\mathbf{x}=0, \text{ and } \mathbf{c}^{\trans}\mathbf{x}=0\}.\]

(a) Prove that $V$ is a subspace of $\R^4$.

(b) Find a basis of $V$.

(c) Determine the dimension of $V$.

 
Read solution

LoadingAdd to solve later

The Range and Null Space of the Zero Transformation of Vector Spaces

Problem 555

Let $U$ and $V$ be vector spaces over a scalar field $\F$.
Define the map $T:U\to V$ by $T(\mathbf{u})=\mathbf{0}_V$ for each vector $\mathbf{u}\in U$.

(a) Prove that $T:U\to V$ is a linear transformation.
(Hence, $T$ is called the zero transformation.)

(b) Determine the null space $\calN(T)$ and the range $\calR(T)$ of $T$.

 
Read solution

LoadingAdd to solve later

Find the Inverse Linear Transformation if the Linear Transformation is an Isomorphism

Problem 553

Let $T:\R^3 \to \R^3$ be the linear transformation defined by the formula
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \,\right)=\begin{bmatrix}
x_1+3x_2-2x_3 \\
2x_1+3x_2 \\
x_2-x_3
\end{bmatrix}.\]

Determine whether $T$ is an isomorphism and if so find the formula for the inverse linear transformation $T^{-1}$.

 
Read solution

LoadingAdd to solve later

A Symmetric Positive Definite Matrix and An Inner Product on a Vector Space

Problem 538

(a) Suppose that $A$ is an $n\times n$ real symmetric positive definite matrix.
Prove that
\[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans}A\mathbf{y}\] defines an inner product on the vector space $\R^n$.

(b) Let $A$ be an $n\times n$ real matrix. Suppose that
\[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans}A\mathbf{y}\] defines an inner product on the vector space $\R^n$.

Prove that $A$ is symmetric and positive definite.

 
Read solution

LoadingAdd to solve later