Tagged: vector space

Quiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null Space

Problem 313

(a) Let $A=\begin{bmatrix}
1 & 2 & 1 \\
3 &6 &4
\end{bmatrix}$ and let
\[\mathbf{a}=\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix}
1 \\
1
\end{bmatrix}.\] For each of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, determine whether the vector is in the null space $\calN(A)$. Do the same for the range $\calR(A)$.

(b) Find a basis of the null space of the matrix $B=\begin{bmatrix}
1 & 1 & 2 \\
-2 &-2 &-4
\end{bmatrix}$.

 
Read solution

LoadingAdd to solve later

Matrix Representation of a Linear Transformation of Subspace of Sequences Satisfying Recurrence Relation

Problem 309

Let $V$ be a real vector space of all real sequences
\[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\] Let $U$ be the subspace of $V$ consisting of all real sequences that satisfy the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ for $k=1, 2, \dots$.

(a) Let
\begin{align*}
\mathbf{u}_1&=(1, 0, -3, -15, -66, \dots)\\
\mathbf{u}_2&=(0, 1, 5, 22, 95, \dots)
\end{align*}
be vectors in $U$. Prove that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a basis of $U$ and conclude that the dimension of $U$ is $2$.


(b) Let $T$ be a map from $U$ to $U$ defined by
\[T\big((a_1, a_2, \dots)\big)=(a_2, a_3, \dots). \] Verify that the map $T$ actually sends a vector $(a_i)_{i=1}^{\infty}\in V$ to a vector $T\big((a_i)_{i=1}^{\infty}\big)$ in $U$, and show that $T$ is a linear transformation from $U$ to $U$.


(c) With respect to the basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ obtained in (a), find the matrix representation $A$ of the linear transformation $T:U \to U$ from (b).

Read solution

LoadingAdd to solve later

Quiz 5: Example and Non-Example of Subspaces in 3-Dimensional Space

Problem 304

Problem 1 Let $W$ be the subset of the $3$-dimensional vector space $\R^3$ defined by
\[W=\left\{ \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}\in \R^3 \quad \middle| \quad 2x_1x_2=x_3 \right\}.\]

(a) Which of the following vectors are in the subset $W$? Choose all vectors that belong to $W$.
\[(1) \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \qquad(2) \begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix} \qquad(3)\begin{bmatrix}
3 \\
0 \\
0
\end{bmatrix} \qquad(4) \begin{bmatrix}
0 \\
0
\end{bmatrix} \qquad(5) \begin{bmatrix}
1 & 2 & 4 \\
1 &2 &4
\end{bmatrix} \qquad(6) \begin{bmatrix}
1 \\
-1 \\
-2
\end{bmatrix}.\]

(b) Determine whether $W$ is a subspace of $\R^3$ or not.
 


Problem 2 Let $W$ be the subset of $\R^3$ defined by
\[W=\left\{ \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \in \R^3 \quad \middle| \quad x_1=3x_2 \text{ and } x_3=0 \right\}.\] Determine whether the subset $W$ is a subspace of $\R^3$ or not.

 
Read solution

LoadingAdd to solve later

Given a Spanning Set of the Null Space of a Matrix, Find the Rank

Problem 303

Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors
\[\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}, \text{ and } \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}.\] Then find the rank of the matrix $A$.

(Purdue University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Basis For Subspace Consisting of Matrices Commute With a Given Diagonal Matrix

Problem 287

Let $V$ be the vector space of all $3\times 3$ real matrices.
Let $A$ be the matrix given below and we define
\[W=\{M\in V \mid AM=MA\}.\] That is, $W$ consists of matrices that commute with $A$.
Then $W$ is a subspace of $V$.

Determine which matrices are in the subspace $W$ and find the dimension of $W$.

(a) \[A=\begin{bmatrix}
a & 0 & 0 \\
0 &b &0 \\
0 & 0 & c
\end{bmatrix},\] where $a, b, c$ are distinct real numbers.

(b) \[A=\begin{bmatrix}
a & 0 & 0 \\
0 &a &0 \\
0 & 0 & b
\end{bmatrix},\] where $a, b$ are distinct real numbers.

 
Read solution

LoadingAdd to solve later

Dual Vector Space and Dual Basis, Some Equality

Problem 282

Let $V$ be a finite dimensional vector space over a field $k$ and let $V^*=\Hom(V, k)$ be the dual vector space of $V$.
Let $\{v_i\}_{i=1}^n$ be a basis of $V$ and let $\{v^i\}_{i=1}^n$ be the dual basis of $V^*$. Then prove that
\[x=\sum_{i=1}^nv^i(x)v_i\] for any vector $x\in V$.

 
Read solution

LoadingAdd to solve later

Linear Transformation, Basis For the Range, Rank, and Nullity, Not Injective

Problem 276

Let $V$ be the vector space of all $2\times 2$ real matrices and let $P_3$ be the vector space of all polynomials of degree $3$ or less with real coefficients.
Let $T: P_3 \to V$ be the linear transformation defined by
\[T(a_0+a_1x+a_2x^2+a_3x^3)=\begin{bmatrix}
a_0+a_2 & -a_0+a_3\\
a_1-a_2 & -a_1-a_3
\end{bmatrix}\] for any polynomial $a_0+a_1x+a_2x^2+a_3 \in P_3$.
Find a basis for the range of $T$, $\calR(T)$, and determine the rank of $T$, $\rk(T)$, and the nullity of $T$, $\nullity(T)$.
Also, prove that $T$ is not injective.

 
Read solution

LoadingAdd to solve later

Prove a Given Subset is a Subspace and Find a Basis and Dimension

Problem 270

Let
\[A=\begin{bmatrix}
4 & 1\\
3& 2
\end{bmatrix}\] and consider the following subset $V$ of the 2-dimensional vector space $\R^2$.
\[V=\{\mathbf{x}\in \R^2 \mid A\mathbf{x}=5\mathbf{x}\}.\]

(a) Prove that the subset $V$ is a subspace of $\R^2$.

(b) Find a basis for $V$ and determine the dimension of $V$.

 
Read solution

LoadingAdd to solve later

Row Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a Matrix

Problem 260

Let \[A=\begin{bmatrix}
1 & 1 & 2 \\
2 &2 &4 \\
2 & 3 & 5
\end{bmatrix}.\]

(a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$.

(b) Find a basis for the null space of $A$.

(c) Find a basis for the range of $A$ that consists of columns of $A$. For each columns, $A_j$ of $A$ that does not appear in the basis, express $A_j$ as a linear combination of the basis vectors.

(d) Exhibit a basis for the row space of $A$.

 
Read solution

LoadingAdd to solve later

Basis and Dimension of the Subspace of All Polynomials of Degree 4 or Less Satisfying Some Conditions.

Problem 256

Let $P_4$ be the vector space consisting of all polynomials of degree $4$ or less with real number coefficients.
Let $W$ be the subspace of $P_2$ by
\[W=\{ p(x)\in P_4 \mid p(1)+p(-1)=0 \text{ and } p(2)+p(-2)=0 \}.\] Find a basis of the subspace $W$ and determine the dimension of $W$.

 
Read solution

LoadingAdd to solve later

Matrix Representation of a Linear Transformation of the Vector Space $R^2$ to $R^2$

Problem 255

Let $B=\{\mathbf{v}_1, \mathbf{v}_2 \}$ be a basis for the vector space $\R^2$, and let $T:\R^2 \to \R^2$ be a linear transformation such that
\[T(\mathbf{v}_1)=\begin{bmatrix}
1 \\
-2
\end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix}
3 \\
1
\end{bmatrix}.\]

If $\mathbf{e}_1=\mathbf{v}_1+2\mathbf{v}_2 \text{ and } \mathbf{e}_2=2\mathbf{v}_1-\mathbf{u}_2$, where $\mathbf{e}_1, \mathbf{e}_2$ are the standard unit vectors in $\R^2$, then find the matrix of $T$ with respect to the basis $\{\mathbf{e}_1, \mathbf{e}_2\}$.
 
Read solution

LoadingAdd to solve later

True or False. The Intersection of Bases is a Basis of the Intersection of Subspaces

Problem 253

Determine whether the following is true or false. If it is true, then give a proof. If it is false, then give a counterexample.

Let $W_1$ and $W_2$ be subspaces of the vector space $\R^n$.
If $B_1$ and $B_2$ are bases for $W_1$ and $W_2$, respectively, then $B_1\cap B_2$ is a basis of the subspace $W_1\cap W_2$.

 
Read solution

LoadingAdd to solve later

Find a Matrix so that a Given Subset is the Null Space of the Matrix, hence it’s a Subspace

Problem 252

Let $W$ be the subset of $\R^3$ defined by
\[W=\left \{ \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}\in \R^3 \quad \middle| \quad 5x_1-2x_2+x_3=0 \right \}.\] Exhibit a $1\times 3$ matrix $A$ such that $W=\calN(A)$, the null space of $A$.
Conclude that the subset $W$ is a subspace of $\R^3$.

 
Read solution

LoadingAdd to solve later