Tagged: vector space

Maximize the Dimension of the Null Space of $A-aI$

Problem 200

Let
\[ A=\begin{bmatrix}
5 & 2 & -1 \\
2 &2 &2 \\
-1 & 2 & 5
\end{bmatrix}.\]

Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix.

Your score of this problem is equal to that dimension times five.

(The Ohio State University Linear Algebra Practice Problem)
 
Read solution

LoadingAdd to solve later

Given All Eigenvalues and Eigenspaces, Compute a Matrix Product

Problem 189

Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces
\[E_2=\Span\left \{\quad \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix}
1 \\
2 \\
1 \\
1
\end{bmatrix},\quad \begin{bmatrix}
1 \\
1 \\
1 \\
2
\end{bmatrix} \quad\right\}.\]

Calculate $C^4 \mathbf{u}$ for $\mathbf{u}=\begin{bmatrix}
6 \\
8 \\
6 \\
9
\end{bmatrix}$ if possible. Explain why if it is not possible!

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Linear Transformation and a Basis of the Vector Space $\R^3$

Problem 182

Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$.
Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$.

Show that the vectors $\mathbf{x}, T\mathbf{x}, T^2\mathbf{x}$ form a basis for $\R^3$.

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Subspace of Skew-Symmetric Matrices and Its Dimension

Problem 166

Let $V$ be the vector space of all $2\times 2$ matrices. Let $W$ be a subset of $V$ consisting of all $2\times 2$ skew-symmetric matrices. (Recall that a matrix $A$ is skew-symmetric if $A^{\trans}=-A$.)

(a) Prove that the subset $W$ is a subspace of $V$.

(b) Find the dimension of $W$.

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Vector Space of Polynomials and a Basis of Its Subspace

Problem 165

Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
\[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where
\begin{align*}
&p_1(x)=1, &p_2(x)=x^2+x+1, \\
&p_3(x)=2x^2, &p_4(x)=x^2-x+1.
\end{align*}

(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.

(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.

(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Vector Space of Polynomials and Coordinate Vectors

Problem 157

Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
\[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where
\begin{align*}
&p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\
&p_3(x)=2x^2, &p_4(x)=2x^2+x+1.
\end{align*}

(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.

(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.

(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.

 
Read solution

LoadingAdd to solve later

Give the Formula for a Linear Transformation from $\R^3$ to $\R^2$

Problem 156

Let $T: \R^3 \to \R^2$ be a linear transformation such that
\[T(\mathbf{e}_1)=\begin{bmatrix}
1 \\
4
\end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix}
2 \\
5
\end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix}
3 \\
6
\end{bmatrix},\] where
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, \mathbf{e}_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}\] are the standard unit basis vectors of $\R^3$.
For any vector $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}\in \R^3$, find a formula for $T(\mathbf{x})$.

 
Read solution

LoadingAdd to solve later

Show the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis

Problem 153

Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient.
Let $W$ be the following subset of $P_3$.
\[W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.\] Here $p'(x)$ is the first derivative of $p(x)$ and $p^{\prime\prime}(x)$ is the second derivative of $p(x)$.

Show that $W$ is a subspace of $P_3$ and find a basis for $W$.

 
Read solution

LoadingAdd to solve later

Any Vector is a Linear Combination of Basis Vectors Uniquely

Problem 151

Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space $V$ over a scalar field $K$. Then show that any vector $\mathbf{v}\in V$ can be written uniquely as
\[\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3,\] where $c_1, c_2, c_3$ are scalars.
 
Read solution

LoadingAdd to solve later

Subspaces of Symmetric, Skew-Symmetric Matrices

Problem 143

Let $V$ be the vector space over $\R$ consisting of all $n\times n$ real matrices for some fixed integer $n$. Prove or disprove that the following subsets of $V$ are subspaces of $V$.

(a) The set $S$ consisting of all $n\times n$ symmetric matrices.

(b) The set $T$ consisting of all $n \times n$ skew-symmetric matrices.

(c) The set $U$ consisting of all $n\times n$ nonsingular matrices.

 
Read solution

LoadingAdd to solve later

Find a Value of a Linear Transformation From $\R^2$ to $\R^3$

Problem 142

Let $T:\R^2 \to \R^3$ be a linear transformation such that $T(\mathbf{e}_1)=\mathbf{u}_1$ and $T(\mathbf{e}_2)=\mathbf{u}_2$, where $\mathbf{e}_1=\begin{bmatrix}
1 \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}$ are unit vectors of $\R^2$ and
\[\mathbf{u}_1= \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}, \quad \mathbf{u}_2=\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}.\] Then find $T\left(\begin{bmatrix}
3 \\
-2
\end{bmatrix}\right)$.

 
Read solution

LoadingAdd to solve later

Linear Independent Vectors and the Vector Space Spanned By Them

Problem 141

Let $V$ be a vector space over a field $K$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be linearly independent vectors in $V$. Let $U$ be the subspace of $V$ spanned by these vectors, that is, $U=\Span \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$.
Let $\mathbf{u}_{n+1}\in V$. Show that $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n, \mathbf{u}_{n+1}$ are linearly independent if and only if $\mathbf{u}_{n+1} \not \in U$.

 
Read solution

LoadingAdd to solve later