The Product of Distinct Sylow $p$-Subgroups Can Never be a Subgroup

Group Theory Problems and Solutions

Problem 544

Let $G$ a finite group and let $H$ and $K$ be two distinct Sylow $p$-group, where $p$ is a prime number dividing the order $|G|$ of $G$.

Prove that the product $HK$ can never be a subgroup of the group $G$.

 
LoadingAdd to solve later

Sponsored Links

Hint.

Use the following fact.

If $H$ and $K$ are finite subgroups of a group $G$, then we have
\[|HK|=\frac{|H| |K|}{|H \cap K|}.\]

Proof.

Let $p^{\alpha}$ is the highest power of $p$ that divides $|G|$.
That is, we have
\[|G|=p^{\alpha}n,\] where $p$ does not divide the integer $n$.

Then the orders of the Sylow $p$-subgroups $H, K$ are $p^{\alpha}$.

Since the intersection $H\cap K$ is a subgroup of $H$, the order of $H \cap K$ is $p^{\beta}$ for some integer $\beta \leq \alpha$ by Lagrange’s theorem.
As $H$ and $K$ are distinct subgroups, we must have $\beta < \alpha$.


Then the number of elements of the product $HK$ is
\begin{align*}
|HK|&=\frac{|H| |K|}{|H \cap K|}\\[6pt] &=\frac{p^{\alpha} p^{\alpha}}{p^{\beta}}=p^{2\alpha-\beta}.
\end{align*}
Since $\beta < \alpha$, we have $2\alpha-\beta > \alpha$.

It follows that the product $HK$ cannot be a subgroup of $G$ since otherwise the order $|HK|=p^{2\alpha-\beta}$ divides $|G|$ by Lagrange’s theorem but $p^{\alpha}$ is the highest power of $p$ that divides $G$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Group of Order $pq$ is Either Abelian or the Center is TrivialGroup of Order $pq$ is Either Abelian or the Center is Trivial Let $G$ be a group of order $|G|=pq$, where $p$ and $q$ are (not necessarily distinct) prime numbers. Then show that $G$ is either abelian group or the center $Z(G)=1$. Hint. Use the result of the problem "If the Quotient by the Center is Cyclic, then the Group is […]
  • Use Lagrange’s Theorem to Prove Fermat’s Little TheoremUse Lagrange’s Theorem to Prove Fermat’s Little Theorem Use Lagrange's Theorem in the multiplicative group $(\Zmod{p})^{\times}$ to prove Fermat's Little Theorem: if $p$ is a prime number then $a^p \equiv a \pmod p$ for all $a \in \Z$.   Before the proof, let us recall Lagrange's Theorem. Lagrange's Theorem If $G$ is a […]
  • Group of Order $pq$ Has a Normal Sylow Subgroup and SolvableGroup of Order $pq$ Has a Normal Sylow Subgroup and Solvable Let $p, q$ be prime numbers such that $p>q$. If a group $G$ has order $pq$, then show the followings. (a) The group $G$ has a normal Sylow $p$-subgroup. (b) The group $G$ is solvable.   Definition/Hint For (a), apply Sylow's theorem. To review Sylow's theorem, […]
  • Determine the Number of Elements of Order 3 in a Non-Cyclic Group of Order 57Determine the Number of Elements of Order 3 in a Non-Cyclic Group of Order 57 Let $G$ be a group of order $57$. Assume that $G$ is not a cyclic group. Then determine the number of elements in $G$ of order $3$.   Proof. Observe the prime factorization $57=3\cdot 19$. Let $n_{19}$ be the number of Sylow $19$-subgroups of $G$. By […]
  • If Two Subsets $A, B$ of a Finite Group $G$ are Large Enough, then $G=AB$If Two Subsets $A, B$ of a Finite Group $G$ are Large Enough, then $G=AB$ Let $G$ be a finite group and let $A, B$ be subsets of $G$ satisfying \[|A|+|B| > |G|.\] Here $|X|$ denotes the cardinality (the number of elements) of the set $X$. Then prove that $G=AB$, where \[AB=\{ab \mid a\in A, b\in B\}.\]   Proof. Since $A, B$ […]
  • Nontrivial Action of a Simple Group on a Finite SetNontrivial Action of a Simple Group on a Finite Set Let $G$ be a simple group and let $X$ be a finite set. Suppose $G$ acts nontrivially on $X$. That is, there exist $g\in G$ and $x \in X$ such that $g\cdot x \neq x$. Then show that $G$ is a finite group and the order of $G$ divides $|X|!$. Proof. Since $G$ acts on $X$, it […]
  • Normal Subgroup Whose Order is Relatively Prime to Its IndexNormal Subgroup Whose Order is Relatively Prime to Its Index Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. Suppose that the order $n$ of $N$ is relatively prime to the index $|G:N|=m$. (a) Prove that $N=\{a\in G \mid a^n=e\}$. (b) Prove that $N=\{b^m \mid b\in G\}$.   Proof. Note that as $n$ and […]
  • Sylow Subgroups of a Group of Order 33 is Normal SubgroupsSylow Subgroups of a Group of Order 33 is Normal Subgroups Prove that any $p$-Sylow subgroup of a group $G$ of order $33$ is a normal subgroup of $G$.   Hint. We use Sylow's theorem. Review the basic terminologies and Sylow's theorem. Recall that if there is only one $p$-Sylow subgroup $P$ of $G$ for a fixed prime $p$, then $P$ […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions
The Normalizer of a Proper Subgroup of a Nilpotent Group is Strictly Bigger

Let $G$ be a nilpotent group and let $H$ be a proper subgroup of $G$. Then prove that $H \subsetneq...

Close