The Product of a Subgroup and a Normal Subgroup is a Subgroup

Group Theory Problems and Solutions in Mathematics

Problem 448

Let $G$ be a group. Let $H$ be a subgroup of $G$ and let $N$ be a normal subgroup of $G$.
The product of $H$ and $N$ is defined to be the subset
\[H\cdot N=\{hn\in G\mid h \in H, n\in N\}.\] Prove that the product $H\cdot N$ is a subgroup of $G$.

 
LoadingAdd to solve later

Sponsored Links


 

Definition.

A subgroup $N$ of a group $G$ is called a normal subgroup if for any $g\in G$ and $n\in N$, we have
\[gng^{-1}\in N.\]  

Proof.

We prove that the product $H\cdot N$ is closed under products and inverses.

Let $h_1n_1$ and $h_2n_2$ be elements in $H\cdot N$, where $h_1, h_2\in H$ and $n_1, n_2\in N$.
Let $e$ be the identity element in $G$.
We have
\begin{align*}
(h_1n_1)(h_2n_2)&=h_1en_1h_2n_2\\
&=h_1(h_2h_2^{-1})n_1h_2n_2 && \text{since $h_2h_2^{-1}=e$}\\
&=(h_1h_2)(h_2^{-1}n_1h_2n_2). \tag{*}
\end{align*}
Since $H$ is a subgroup, the element $h_1h_2$ is in $H$.
Also, since $N$ is a normal subgroup, we have $h_2^{-1}n_1h_2$ is in $N$. Hence
\[h_2^{-1}n_1h_2n_2=(h_2^{-1}n_1h_2)n_2\in N.\] It follows from (*) that the product
\[(h_1n_1)(h_2n_2)=(h_1h_2)(h_2^{-1}n_1h_2n_2)\in H\cdot N.\] Therefore, the product $H\cdot N$ is closed under products.

Next, let $hn$ be any element in $H\cdot N$, where $h\in H$ and $n\in N$.
Then we have
\begin{align*}
(hn)^{-1}&=n^{-1}h^{-1}\\
&=en^{-1}h^{-1}\\
&=(h^{-1}h)n^{-1}h^{-1} &&\text{since $h^{-1}h=e$}\\
&=h^{-1}(hn^{-1}h^{-1}).
\end{align*}
Since $N$ is a normal subgroup, we have $hn^{-1}h^{-1}\in N$, and hence
\[(hn)^{-1}=h^{-1}(hn^{-1}h^{-1})\in H\cdot N.\] Thus, the product $H\cdot N$ is closed under inverses.

This completes the proof that the product $H\cdot N$ is a subgroup of $G$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Normal Subgroups, Isomorphic Quotients, But Not IsomorphicNormal Subgroups, Isomorphic Quotients, But Not Isomorphic Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$. Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.   Proof. We give a […]
  • Group Homomorphism, Preimage, and Product of GroupsGroup Homomorphism, Preimage, and Product of Groups Let $G, G'$ be groups and let $f:G \to G'$ be a group homomorphism. Put $N=\ker(f)$. Then show that we have \[f^{-1}(f(H))=HN.\]   Proof. $(\subset)$ Take an arbitrary element $g\in f^{-1}(f(H))$. Then we have $f(g)\in f(H)$. It follows that there exists $h\in H$ […]
  • Image of a Normal Subgroup Under a Surjective Homomorphism is a Normal SubgroupImage of a Normal Subgroup Under a Surjective Homomorphism is a Normal Subgroup Let $f: H \to G$ be a surjective group homomorphism from a group $H$ to a group $G$. Let $N$ be a normal subgroup of $H$. Show that the image $f(N)$ is normal in $G$.   Proof. To show that $f(N)$ is normal, we show that $gf(N)g^{-1}=f(N)$ for any $g \in […]
  • A Simple Abelian Group if and only if the Order is a Prime NumberA Simple Abelian Group if and only if the Order is a Prime Number Let $G$ be a group. (Do not assume that $G$ is a finite group.) Prove that $G$ is a simple abelian group if and only if the order of $G$ is a prime number.   Definition. A group $G$ is called simple if $G$ is a nontrivial group and the only normal subgroups of $G$ is […]
  • Any Subgroup of Index 2 in a Finite Group is NormalAny Subgroup of Index 2 in a Finite Group is Normal Show that any subgroup of index $2$ in a group is a normal subgroup. Hint. Left (right) cosets partition the group into disjoint sets. Consider both left and right cosets. Proof. Let $H$ be a subgroup of index $2$ in a group $G$. Let $e \in G$ be the identity […]
  • If a Sylow Subgroup is Normal in a Normal Subgroup, it is a Normal SubgroupIf a Sylow Subgroup is Normal in a Normal Subgroup, it is a Normal Subgroup Let $G$ be a finite group. Suppose that $p$ is a prime number that divides the order of $G$. Let $N$ be a normal subgroup of $G$ and let $P$ be a $p$-Sylow subgroup of $G$. Show that if $P$ is normal in $N$, then $P$ is a normal subgroup of $G$.   Hint. It follows from […]
  • Abelian Group and Direct Product of Its SubgroupsAbelian Group and Direct Product of Its Subgroups Let $G$ be a finite abelian group of order $mn$, where $m$ and $n$ are relatively prime positive integers. Then show that there exists unique subgroups $G_1$ of order $m$ and $G_2$ of order $n$ such that $G\cong G_1 \times G_2$.   Hint. Consider […]
  • Abelian Normal Subgroup, Intersection, and Product of GroupsAbelian Normal Subgroup, Intersection, and Product of Groups Let $G$ be a group and let $A$ be an abelian subgroup of $G$ with $A \triangleleft G$. (That is, $A$ is a normal subgroup of $G$.) If $B$ is any subgroup of $G$, then show that \[A \cap B \triangleleft AB.\]   Proof. First of all, since $A \triangleleft G$, the […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Inverse Map of a Bijective Homomorphism is a Group Homomorphism

Let $G$ and $H$ be groups and let $\phi: G \to H$ be a group homomorphism. Suppose that $f:G\to H$...

Close