The Quotient Ring by an Ideal of a Ring of Some Matrices is Isomorphic to $\Q$.

Problems and solutions of ring theory in abstract algebra

Problem 525

Let
\[R=\left\{\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \quad \middle | \quad a, b\in \Q \,\right\}.\] Then the usual matrix addition and multiplication make $R$ an ring.

Let
\[J=\left\{\, \begin{bmatrix}
0 & b\\
0& 0
\end{bmatrix} \quad \middle | \quad b \in \Q \,\right\}\] be a subset of the ring $R$.

(a) Prove that the subset $J$ is an ideal of the ring $R$.

(b) Prove that the quotient ring $R/J$ is isomorphic to $\Q$.

 
FavoriteLoadingAdd to solve later

Sponsored Links

Proof.

(a) Prove that the subset $J$ is an ideal of the ring $R$.

Let
\[\alpha=\begin{bmatrix}
0 & a\\
0& 0
\end{bmatrix} \text{ and } \beta=\begin{bmatrix}
0 & b\\
0& 0
\end{bmatrix}\] be arbitrary elements in $J$ with $a, b\in \Q$.
Then since we have
\begin{align*}
\alpha-\beta=\begin{bmatrix}
0 & a-b\\
0& 0
\end{bmatrix}\in J,
\end{align*}
the subset $J$ is an additive group.


Now consider any elements
\[\rho=\begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \in R \text{ and } \gamma=\begin{bmatrix}
0 & c\\
0& 0
\end{bmatrix}\in J.\] Then we have
\begin{align*}
\rho \gamma&=\begin{bmatrix}
0 & ac\\
0& 0
\end{bmatrix}\in J \text{ and }\\[6pt] \gamma \rho &=\begin{bmatrix}
0 & ca\\
0& 0
\end{bmatrix}\in J.
\end{align*}
Thus, each element of $J$ multiplied by an element of $R$ is still in $J$.


Hence $J$ is an ideal of the ring $R$.

(b) Prove that the quotient ring $R/J$ is isomorphic to $\Q$.

Consider the map $\phi:R\to \Q$ defined by
\[\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \,\right)=a,\] for $\begin{bmatrix}
a & b\\
0& a
\end{bmatrix}\in R$.


We first show that the map $\phi$ is a ring homomorphism.
First of all, we have
\begin{align*}
\phi\left(\, \begin{bmatrix}
1 & 0\\
0& 1
\end{bmatrix} \,\right)=1.
\end{align*}
Thus $\phi$ maps the unity element of $R$ to the unity element of $\Q$.


Take
\[\begin{bmatrix}
a & b\\
0& a
\end{bmatrix}, \begin{bmatrix}
c & d\\
0& c
\end{bmatrix}\in R.\] Then we have
\begin{align*}
\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix}+\begin{bmatrix}
c & d\\
0& c
\end{bmatrix} \,\right)&=\phi\left(\, \begin{bmatrix}
a+c & b+d\\
0& a+c
\end{bmatrix} \,\right)=a+c\\[6pt] &=\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \,\right)+\phi\left(\, \begin{bmatrix}
c & d\\
0& c
\end{bmatrix} \,\right)
\end{align*}
and
\begin{align*}
\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix}\begin{bmatrix}
c & d\\
0& c
\end{bmatrix} \,\right)&=\phi\left(\, \begin{bmatrix}
ac & ad+bc\\
0& ac
\end{bmatrix} \,\right)=ac\\[6pt] &=\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \,\right)\phi\left(\, \begin{bmatrix}
c & d\\
0& c
\end{bmatrix} \,\right).
\end{align*}
It follows from these computations that $\phi:R\to \Q$ is a ring homomorphism.


Next, we determine the kernel of $\phi$.
We claim that $\ker(\phi)=J$.

If $\rho=\begin{bmatrix}
a & b\\
0& a
\end{bmatrix}\in \ker(\phi)$, then we have
\[0=\phi(\rho)=\phi\left(\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \,\right)=a.\]

So $\rho=\begin{bmatrix}
0 & b\\
0& 0
\end{bmatrix}\in J$, and hence $\ker(\phi)\subset J$.


On the other hand, if $\rho=\begin{bmatrix}
0 & b\\
0& 0
\end{bmatrix}\in J$, then it follows from the definition of $\phi$ that $\phi(\rho)=0$.
Thus, $J \subset \ker(\phi)$.
Putting these two inclusions together yields $J=\ker(\phi)$.


Observe that the homomorphism $\phi$ is surjective.
In fact, for any $a\in \Q$, we take $\begin{bmatrix}
a & 0\\
0& a
\end{bmatrix}\in R$. Then we have
\[\phi\left(\, \begin{bmatrix}
a & 0\\
0& a
\end{bmatrix} \,\right)=a.\]
In summary, $\phi:R\to \Q$ is a surjective homomorphism with kernel $J$.

It follows from the isomorphism theorem that
\[R/J\cong \Q,\] as required.

Remark.

Recall that the kernel of a ring homomorphism $\phi:R\to S$ is always an ideal of $R$.

Thus, the proof of (b) shows that $J$ is an ideal of $R$. This gives an alternative proof of part (a).


FavoriteLoadingAdd to solve later

Sponsored Links

More from my site

  • A Maximal Ideal in the Ring of Continuous Functions and a Quotient RingA Maximal Ideal in the Ring of Continuous Functions and a Quotient Ring Let $R$ be the ring of all continuous functions on the interval $[0, 2]$. Let $I$ be the subset of $R$ defined by \[I:=\{ f(x) \in R \mid f(1)=0\}.\] Then prove that $I$ is an ideal of the ring $R$. Moreover, show that $I$ is maximal and determine […]
  • Prove the Ring Isomorphism $R[x,y]/(x) \cong R[y]$Prove the Ring Isomorphism $R[x,y]/(x) \cong R[y]$ Let $R$ be a commutative ring. Consider the polynomial ring $R[x,y]$ in two variables $x, y$. Let $(x)$ be the principal ideal of $R[x,y]$ generated by $x$. Prove that $R[x, y]/(x)$ is isomorphic to $R[y]$ as a ring.   Proof. Define the map $\psi: R[x,y] \to […]
  • Determine the Quotient Ring $\Z[\sqrt{10}]/(2, \sqrt{10})$Determine the Quotient Ring $\Z[\sqrt{10}]/(2, \sqrt{10})$ Let \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}\] be an ideal of the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}.\] Then determine the quotient ring $\Z[\sqrt{10}]/P$. Is $P$ a prime ideal? Is $P$ a maximal ideal?   Solution. We […]
  • Characteristic of an Integral Domain is 0 or a Prime NumberCharacteristic of an Integral Domain is 0 or a Prime Number Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.   Definition of the characteristic of a ring. The characteristic of a commutative ring $R$ with $1$ is defined as […]
  • Three Equivalent Conditions for a Ring to be a FieldThree Equivalent Conditions for a Ring to be a Field Let $R$ be a ring with $1$. Prove that the following three statements are equivalent. The ring $R$ is a field. The only ideals of $R$ are $(0)$ and $R$. Let $S$ be any ring with $1$. Then any ring homomorphism $f:R \to S$ is injective.   Proof. […]
  • $(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain.$(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain. Let $R$ be an integral domain. Then prove that the ideal $(x^3-y^2)$ is a prime ideal in the ring $R[x, y]$.   Proof. Consider the ring $R[t]$, where $t$ is a variable. Since $R$ is an integral domain, so is $R[t]$. Define the function $\Psi:R[x,y] \to R[t]$ sending […]
  • The Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral DomainThe Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral Domain Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain. Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a […]
  • Rings $2\Z$ and $3\Z$ are Not IsomorphicRings $2\Z$ and $3\Z$ are Not Isomorphic Prove that the rings $2\Z$ and $3\Z$ are not isomorphic.   Definition of a ring homomorphism. Let $R$ and $S$ be rings. A homomorphism is a map $f:R\to S$ satisfying $f(a+b)=f(a)+f(b)$ for all $a, b \in R$, and $f(ab)=f(a)f(b)$ for all $a, b \in R$. A […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Ring theory
Problems and solutions of ring theory in abstract algebra
Is the Given Subset of The Ring of Integer Matrices an Ideal?

Let $R$ be the ring of all $2\times 2$ matrices with integer coefficients: \[R=\left\{\, \begin{bmatrix} a & b\\ c& d...

Close