The Rank of the Sum of Two Matrices

Problems and solutions in Linear Algebra

Problem 441

Let $A$ and $B$ be $m\times n$ matrices.
Prove that
\[\rk(A+B) \leq \rk(A)+\rk(B).\] LoadingAdd to solve later

Sponsored Links

Proof.

Let
\[A=[\mathbf{a}_1, \dots, \mathbf{a}_n] \text{ and } B=[\mathbf{b}_1, \dots, \mathbf{b}_n],\] where $\mathbf{a}_i$ and $\mathbf{b}_i$ are column vectors of $A$ and $B$, respectively.

Then the rank of the matrix $A$ is the dimension of the column space of $A$.
That is, we have
\[\rk(A)=\dim\left(\,\Span(\mathbf{a}_1, \dots, \mathbf{a}_n) \,\right).\] Similarly, we have
\[\rk(B)=\dim\left(\, \Span(\mathbf{b}_1, \dots, \mathbf{b}_n) \,\right)\] and
\[\rk(A+B)=\dim\left(\,(\Span(\mathbf{a}_1+\mathbf{b}_1, \dots, \mathbf{a}_n+\mathbf{b}_n)\,\right)\] since $A+B=[\mathbf{a}_1+\mathbf{b}_1, \dots, \mathbf{a}_n+\mathbf{b}_n]$.


We claim that
\[\Span(\mathbf{a}_1+\mathbf{b}_1, \dots, \mathbf{a}_n+\mathbf{b}_n) \subset \Span(\mathbf{a}_1, \dots, \mathbf{a}_n)+\Span(\mathbf{b}_1, \dots, \mathbf{b}_n).\] Any vector $\mathbf{x}\in \Span(\mathbf{a}_1+\mathbf{b}_1, \dots, \mathbf{a}_n+\mathbf{b}_n)$ can be written as
\begin{align*}
\mathbf{x}=r_1(\mathbf{a}_1+\mathbf{b}_1)+\cdots +r_n(\mathbf{a}_n+\mathbf{b}_n)
\end{align*}
for some scalars $r_1, \dots, r_n$.


Thus we have
\begin{align*}
\mathbf{x}&=r_1(\mathbf{a}_1+\mathbf{b}_1)+\cdots +r_n(\mathbf{a}_n+\mathbf{b}_n)\\
&=(r_1\mathbf{a}_1+\cdots +r_n\mathbf{a}_n)+(r_1\mathbf{b}_1+\cdots +r_n\mathbf{b}_n)\\
&\in \Span(\mathbf{a}_1, \dots, \mathbf{a}_n)+\Span(\mathbf{b}_1, \dots, \mathbf{b}_n),
\end{align*}
and hence the claim is proved.


Then we have
\begin{align*}
&\rk(A+B)\\
&=\dim\left(\,(\Span(\mathbf{a}_1+\mathbf{b}_1, \dots, \mathbf{a}_n+\mathbf{b}_n)\,\right)\\
&\leq \dim \left(\,\Span(\mathbf{a}_1, \dots, \mathbf{a}_n)+\Span(\mathbf{b}_1, \dots, \mathbf{b}_n) \,\right)\\
&\leq \dim\left(\, \Span(\mathbf{a}_1, \dots, \mathbf{a}_n) \,\right)+\dim \left(\, \Span(\mathbf{b}_1, \dots, \mathbf{b}_n) \,\right) \\
&=\rk(A)+\rk(B).
\end{align*}


Here we used the fact that for two subspaces $U$ and $V$ of a vector space, we have
\[\dim(U+V)\leq \dim(U)+\dim(V).\] For a proof of this fact, see the post “Dimension of the sum of two subspaces“.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

1 Response

  1. 07/11/2017

    […] the post ↴ The rank of the sum of two matrices for a proof of this […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
Dimension of the Sum of Two Subspaces

Let $U$ and $V$ be finite dimensional subspaces in a vector space over a scalar field $K$. Then prove that...

Close